Tools for Worldmaking: Universal Concepts for Mental
Reality

Drew Flieder

29 November 2022; updated 8 June 2025

Contents

1 Introductory Statement

I Structure and Composition: Universal Concepts for Thought

2 Structures

21

2.2

2.3

2.4

Foundations
2.1.1 Conceptual Primitives L.
2.1.2 The Category of Sets and Relations
Structures: Naive Setup
2.2.1 Elementary Structures
2.2.2 Compound Structures
Structures: Formal Setup oo
2.3.1 Technical Preliminaries

2.3.1.1 Locally Small Categories

2.3.1.2 Contravariant Hom-Functors

2.3.1.3 The Yoneda Embedding
2.3.2 Formal Definition of a Structure
2.3.3 Rel® as a Universal Concrete Category

2.3.3.1 The Collection of Structures on a Given Set

2.3.3.2 Structure Morphisms
Construction Schemes of Structures.
2.4.1 The Graphical Representation of a Structure
2.4.2 Classification of Structures According to Construction Schemes . . .

3 Compositions

3.1

3.2

Ontology e
3.1.1 Composition Theory as an Abstract Hylomorphism
3.1.2 Towards a Universal Method of Encoding
Elementary Compositionso
3.2.1 Formal Definition

11
11
11
12
13
13
22
24
24
24
25
26
27
31
32
33
36
36
37

4 CONTENTS

3.2.2 The Canonical Encoding of Elementary Compositions as Structures 54

3.2.2.1 Translation of a Determinate Composition Into a Structure 54

3.2.2.2 Translation of a Determinable Composition Into a Structure 55

3.3 Steps to Constructing Composition Hierarchies 56

3.3.1 Basis of Compositions 57

3.3.2 Compound Compositions 58

3.3.2.1 Composition Accumulators 59

3.3.2.2 Realizing Compound Compositions 60

3.3.3 Composition Constructors 65

3.3.4 Super Domain of Compositions 69

3.3.5 Composition Hierarchies 69

4 Aggregates 71

4.1 Aggregates e 71

4.1.1 Orientation e 71

4.1.2 Definition 72

4.2 Categorical Structure of a Super Domain of Aggregates 73

4.2.1 The Category 6(X) of a Super Domain ¥ 73

4.2.2 A Few Functors and Their Fibers 73

4.3 Analysis of Super Domains L 76

4.3.1 Analysisviasup 76

4.3.1.1 Rank Distribution 000 77

4.3.1.2 Prevalence of Individual Basis Compositions 79

4.3.1.3 Prevalence of Supports In a Super Domain 80

4.3.2 Analysisviamul Lo 84

4.3.2.1 Aggregate Homomorphisms 84

4.3.2.2 Ubiquity of Individual Basis Compositions 87

4.3.3 Examples e 90

4.4 Super Domains as Compositions L. 94

4.4.1 Universal Super Domains 95
4.4.2 Super Domains as Elementary Compositions and Categories of Super

Domains 98

4.42.1 The Category of Super Domains 98

4.4.2.2 Determining Morphisms Between N-Modules 99

4.5 Variable Aggregates 101

4.5.1 Processes 102

4.5.2 Super Domains of Variable Aggregates 102

4.6 Aggregates with Real-Valued Multiplicities 105

CONTENTS 5

II Logic and Worlds 107
5 On Meaning 109
5.1 Representationalism and Inferentialism 109
5.1.1 Representationalism L. 109

5.1.2 Inferentialism 111

5.2 Uses and Abuses 112
5.3 Is Versus OQught e 114
5.3.1 The Question “What is 7” as an Implicit Normative Question . . . 114

5.3.2 The Pragmatic Nature of Meaning-Production 115

5.4 The Path to Formal Predicates 116
5.5 Warning! L 119

6 Concepts 123
6.1 Explication e 123
6.1.1 Carnap’s Criterion 123

6.1.2 Classificatory, Comparative, and Quantitative Concepts 124

6.1.3 Our Project: Enriching Traditional Semantical Approaches 128

6.2 Tools for Language-Construction 130
6.2.1 Preliminary Constructions 130

6.2.2 Local Predication 133

6.2.2.1 Local Attributes of Structures 133

6.2.2.2 Descriptive Enrichments of Structures 137

6.2.3 Truth Values 140

6.2.4 Abstract and Concrete Predicates 143

6.2.4.1 Abstract Predicates 144

6.2.4.2 Actualizing Abstract Predicates 145

6.2.4.3 Scientific and Prescientific Concepts 150

CONTENTS

Chapter 1

Introductory Statement

This work presents a series of investigations into the nature of mathematical concept-
building.

CHAPTER 1. INTRODUCTORY STATEMENT

Part 1

Structure and Composition:
Universal Concepts for Thought

Chapter 2

Structures

2.1 Foundations

SUMMARY. We establish the foundational ideas underlying the structure theory to be
developed in this work.

7§7

Our current task is to construct a formalism for the concept of structure. Indeed, there
have been many such attempts to define structure, especially in areas dealing with foun-
dations of mathematics. Our task is to define structure in the sense that mathematicians
speak of ‘sets with additional structure’, such as e.g. groups, topological spaces, modules,
and so on. Whereas (many) categories consist of such structured sets, there is to date
no category the objects of which are structures in general. Establishing such a ‘universal’
category of structures is thus the objective of this chapter. We will see that the category of
structures to be defined has the property of being a topos, which allows for highly general
constructions of new structures from given structures.

2.1.1 Conceptual Primitives

SUMMARY. The concept of a relation is discussed, as it serves as the foundation for the
concept of a structure.

7§7

If we think of structure as the relationships inherent to some set, then we can reduce
the notion of structure to the primitive concept of a relation. Generally speaking, for a
thing x to be related to a thing y means that there is some concept R which associates x
with y. For instance, the ‘less than or equal to’ relation < relates x to y iff z is less than
or equal to y.

11

12 CHAPTER 2. STRUCTURES

Mathematically speaking, given sets A and B, a relation R is a subset of their Cartesian
product, namely R C A x B. An element (a,b) € R is thus an ordered pair such that the
relation R holds between a € A and b € B.

A special case of a relation is the situation where R C A x A. Then R is called
an endorelation, since it is a relation from a set to itself, rather than between sets. For
instance, the relation < is an endorelation on the natural numbers N.

The generality of both the concept of a set and the concept of a relation suffices to
account for the concept of structure as such. Not only can we define familiar mathematical
structures such as groups, topological spaces, modules, etc., but also hitherto unconceived
structures. Although the structures that we will define are incarnated from an abstract
and eternal mathematical layer of reality, they also partake in a concrete and historical
reality that is tied to practical activities. This is like the situation in science, where there
may be many instances of vector spaces Vi, ..., V,, yet such that all are isomorphic to
R. Essentially, the uniqueness of each of these vector spaces is determined by the context
in which they are instantiated, whereas R is the eternal layer of reality that conditions
the declaration of the existence of each V;. We will see that the definition of a structure
incorporates the relation between an abstract layer of reality, and the concrete layer of
reality in which the instantiations of abstract objects exist.

2.1.2 The Category of Sets and Relations

SuMMARY. The category of sets and relations is introduced, as it serves as the basis of the
structure theory to be developed.

§

The category Rel has sets for objects and relations for morphisms. Rel contrasts
with many other categories insofar as relations between objects are more general than the
functional morphisms that hold between objects of common categories such as Set, Top,
Grp,! and many others. The latter categories have morphisms that are special types of
functions on the underlying sets of the objects in the category. A function is a special type
of relation, defined as follows:

Definition 2.1 (Function). A relation f C A x B is a function iff it satisfies the following
criteria:

1. Totality: f is total iff for every a € A, there exists an (a,b) € f.

2. Functionality: f is functional iff (a,b), (a,c) € f implies a = c.

!These categories are, respectively, the category of sets, topological spaces, and groups.

2.2. STRUCTURES: NAIVE SETUP 13

What distinguishes Rel from categories whose morphisms are functional is that the
morphisms of Rel need not be total nor functional.

Since the number of relations that exist between sets is greater than the number of
functions which exist between them, Rel contains Set as a wide? subcategory.

Composition of relations R: A — B and S : B — C in Rel is the standard composition
of relations, i.e.,

SoR={(a,c) e AxC:3be B((a,b) e RN (b,c) € S)} CAxC. (2.1)

Furthermore, Rel can be turned into a 2-category,® where a map Q : R = S is such that
R,S: A — B are relations, and R C S.

Having laid out the basics, we may now take a first attempt at defining what constitutes
a structure.

2.2 Structures: Naive Setup

SUMMARY. A naive formalism for dealing with structures is presented. We first define ele-
mentary structures, and construct some examples. Once elementary structures are defined,
we will then define compound structures.

7§7

2.2.1 Elementary Structures

SUMMARY. The definition of an elementary structure is provided. We construct three
different types of elementary structures. The first is a monoid, the second a topological
space, and the third a module.

7§7

The idea of an elementary structure is that we choose some set X, along with a set
of relations {RZ- A= X }Z I all with codomain X, and that these relations will endow

X with structure. This is analogous to how signatures are defined in mathematical logic.*
For instance, for an abelian group G, its signature o = (+, —, e) establishes the following:

1. The function + : G X G — G is the binary operation on G.

2. The function — : G — G maps elements in G to their inverses.

2A wide subcategory C’ of C' is a subcategory that contains all the objects of C.

3A 2-category has arrows between arrows. In a 2-category, O-cells are objects, 1-cells are arrows, and
2-cells are arrows between arrows. In general, an n-category has cells from 0 and n, where a k-cell is an
arrow between (k — 1)-cells.

“See [10, p. 4] for definition of a signature.

14 CHAPTER 2. STRUCTURES

3. The function e : 1 — G picks out the identity element in G (where 1 is understood
as a singleton set).

Thus, for a set G in Rel, we can obviously generate such a group structure with the set
{+, -, e} of relations, which are, in this case, functions.

The use of such signatures cannot, however, achieve the ultimate goal of our task, which
is (1) to construct a universal category of structures, and (2) to provide a grammar that
defines the rules for constructing new structures from given structures. To achieve such a
task requires a different formalism than that found in mathematical logic. We will present
the rigorous theory of structures in Section 2.3, but for now, we present the definition of
an elementary structure.

Definition 2.2 (Elementary Structure). An elementary structure is a pair S = (X, R),
where X is a set in Rel and R = {Ri A — X}z‘el a set of relations in Rel, all with
codomain X. We call X the underlying set of S and R the generators of S, the idea being
that the relations in R generate the structure S on the underlying set X.

This definition clearly establishes the idea of having a set with additional structure. To
see this idea in action, we now provide a few example constructions.

Example 2.1. Monoids.
The axioms for a monoid are the following:

Axioms 2.1 (Monoid). A monoid M consists of a set M along with a binary operation
«: M x M — M such that the following conditions hold:

1. Identity. There exists an element e € M such that eca =a-<e=a for all a € M.
2. Associativity. For all a,b,c € M, (a+b)+c=a-(b-c).

All of this can be encoded as an elementary structure M = (M, F'). We first take care
of the binary operation via the function «: M x M — M. Now we can define the rest.

Axiom 1. The identity axiom is taken care of by first specifying the functione : 1 — M
that picks out the identity element in M. However, we also have the requirement that this
element e € M must be such that for all a € M, we have a+e = e+a = a. We can check

2.2. STRUCTURES: NAIVE SETUP 15

that this condition holds via the set-theoretic® pullback

(e x M) xpr (M xe) —22—— Mxe
pri \\\I(ii{ *|Mxe (22)
Ty
ex M - >y M
|ex M

(Note that e is technically shorthand for {e(1)}, since e(1) € M, and we wish to take
the product of M with the singleton {e(1)}.) The condition e+-a = a-e is satisfied if
(e x M) xpr (M x e) consists only of pairs of the form ((e,a), (a,e€)), and the morphism
Id§, is a bijective function where 1d§,((e, a), (a,€)) = a.

Azxiom 2. Next we need to establish the axiom of associativity. We will see that the
satisfaction of this axiom, like that of the axiom of identity, can be encoded as a set-
theoretic pullback. First, define the morphism

(=) M xM)xM—M (2.3)
that sends a pair ((a,b), c) to the evaluation (a«b) « c. Similarly, define the morphism
(=) Mx(MxM)—M (2.4)

that sends (a, (b, c)) to a+(b-c). The axiom of associativity states that for all a,b,c € M, we
have that (a+b)+c = a-+(b+c). We can check that this condition holds via the set-theoretic
pullback

(M x M) x M) xp (M x (M x M)) —2— M x (M x M)

pri \\\‘~\\\E°\('\7_)7 '(_7°)) .(_7.)
R
(M x M) x M v M

The set ((M x M) x M) xpr (M x (M x M)) should contain as a subset pairs
(((a,b),¢), (a,(b,c))), for all a,b,c € M. If it does, then this means (a+b)+c =a-(b-c),
and therefore the axiom of associativity holds.

5Tt is important that we state explicitly that this pullback is a set-theoretic pullback, meaning that it is
a pullback in Set, rather than a pullback in Rel. This is because limits and colimits work much differently
in Rel than they do in Set, and moreover Rel does not have limits and colimits in general, whereas Set
does. For instance, a product in Rel is likewise a coproduct via self-duality, and such (co)products are
simply disjoint unions of sets.

16 CHAPTER 2. STRUCTURES

Thus we have established a monoidal structure M = (M, R). Technically, all that R is
required to have is the morphism « : M x M — M, since all of the axioms that a monoid
is required to satisfy are determined by the behavior of the binary operation. However, we
add the morphisms that establish the identity element, as well those which demonstrate
that the laws of identity and associativity are satisfied, in order to be explicit. We can
picture the total diagram in Rel that establishes the structure of M, along with a more
reduced diagram that still communicates the required information, as in Figure 2.1.

Example 2.2. Topological spaces.

There are many ways to axiomatize topological spaces, one of them being via neigh-
borhoods, which is the approach we will take.

Let X be the underlying set of a topological space. A topology on X is defined via the
following axioms:

Axioms 2.2 (Topological Space). Each element = € X has a non-empty collection N, of
subsets U C X, called neighborhoods of x, such that the following conditions hold:

1. If N, is a neighborhood of x, then z € N,.

2. If M is a subset of X and includes a neighborhood of z, then M is a neighborhood
of z.

3. The intersection of two neighborhoods of z is a neighborhood of x.

4. If N, is a neighborhood of x, then it contains a neighborhood M, such that N, is a
neighborhood of every point in M,.

Let’s translate this axiomatization into the language of elementary structures step-
by-step. There are multiple ways to do this, so the following construction is one of the
many viable methods to define topological spaces as elementary structures. Let X be the
underlying set of the structure T'op = (X, 1), where T is to be defined via the following
constructions.

Our first step is to define the relation

N:PX - X (2.6)

that associates neighborhoods to elements.% Then it is simply a matter of checking whether
N satisfies the above axioms.

Aziom 1. To encapsulate the first axiom, we need to ensure that A associates U to x
only if x € U. We can do this as follows. First, define the relation

e:PX =X (2.7)

SNote that PX is the power set of X, i.e., the set of all subsets of X.

17

2.2. STRUCTURES: NAIVE SETUP

(q) ut se 31 Ajpdurs wed om ‘I10AdMOY ")y Sutugep jo sseoold [ej0) o1y s3o1dep (&) Ul WeISeIp o], :1°g oINS

"J{ UO pouyep 9INJonIjs [ePIOUOW o1} JO Uwreiderp peonpal y (q)

\\\\\\\\\\MMM\\\\N
(7 % 2)

(=) x) 0x (o < (= 7))

—

“JU U0 Pouyep 9INjoniys [RpIoUOW oY) Jo wreideip (103 oy, (&)

I X V) X W +—— (0 x ;) x ;) 0x (0 x (0 x 7))
/ A.Flv. Txd

IX N 2 (=)

axml,
ead W X3, 1//////////////////////////////////
X 9

(@) WX (% 2) I

(2 x) W

18 CHAPTER 2. STRUCTURES

that assigns to each U € PX every element v € U. This ensures that U € PX relates to
x € X iff z € U. Now, axiom 1 is satisfied iff there’s a 2-morphism ¢ : A' = ¢, which means
that A is a subrelation of ¢, i.e., N' C €. Since every pair (U,z) € € is such that z € U,
it is therefore the case that every pair (V,y) € N also has y € V. We can see this in the
following diagram:

PX ﬂ X (2.8)

Note, however, that ¢ : A" = € cannot be a generator in T, since by definition an an
element ¢ € T must be a 1-morphism with codomain X. Fortunately we can translate ¢
into a series of 1-morphisms that arrive at X. Since relations can be identified with sets,
and sets are the objects of Rel, any 2-morphism [: (R: a — b) = (S : a — b) can be
translated into a diagram

R— 1T

pra (29)

el
3
St

where [is an inclusion function, and prg (resp. prf) is the set-theoretic projection onto
the second component.
In our case, the 2-morphism ¢ : N' = ¢ is translated into the diagram

Ne—>" e

(2.10)

pr2

X

Note that, when considered as a set, pr§ (resp. prjzv) consists of pairs ((U, :U),:L') Since
each ((U,x) ,r:f) canonically identifies with (U, z), there is an obvious equivalence between
prs (resp. pry’) and € (resp. N). Thus, we can check whether axiom 1 is satisfied if we
have such an inclusion ¢ : N — €.

Aziom 2. We need to show that given a neighborhood N of z, a superset M O N is
also a neighborhood of x.

Let N; : PX — X be the subrelation of N such that (U,y) € N, iff (U,y) € N and
y =x. Let p: 1 — PX be a function which picks out a unique element in PX. Then
N op(1) is either a singleton or the empty set. It is a singleton precisely when p(1) € PX
is a neighborhood of z, and empty when it isn’t.

2.2. STRUCTURES: NAIVE SETUP 19

Suppose that AV, o p(1) # @, and therefore that p(1) is a neighborhood of x. We have
that for any other ¢ : 1 — PX such that p(1) C ¢(1), N 0q(1) # &. Thus for any 7 : 1 —
PX such that NV, om(1) # &, there arises the set of maps {p;}ic; : 1 = PX containing all

maps p; such that 7(1) C p;(1). This axiom guarantees that for all p; € {pi}iep we have
Nz opj(1) # @, and therefore the diagram
11— . PpX
2.11
Nxoﬂ' AN N:c ()
Y
X

cominutes.
In the situation where x has a smallest neighborhood M,,, then all we need is the map
min, : 1 - PX : 1 — M,, and every other neighborhood of x is derived.

Azxiom 3. Here we are demonstrating that for two neighborhoods N, M of x, their
intersection N N M is a neighborhood of z.

Let p,q : 1 — PX be functions such that N, o p(1) # @ and N, o q(1) # &, where
N, is as in the previous demonstration. There exists a map pNq : 1 — PX such that
pNq(l) =p(1)Ng(l), and Ny opNg(l) # &. Thus the following diagram commutes:

14 spx M L x (2.12)

Aziom 4. The last thing we need to demonstrate is that any neighborhood N of x
contains a neighborhood M of x such that IV is a neighborhood of every point in M.

For a subset A C X, let N4 : PA — X denote the relation which assigns neighborhoods
to each a € A. In other words, N4 is a subrelation of . Note that for any p: 1 — PX, we
have that N4 o p(1) assigns p(1) to a € A iff p(1) is a neighborhood of a. If every element
a € A has p(1) as a neighborhood, then A4 o p(1) is in bijection with A: particularly,
Nyop(l) = A.

Now let N : PX — X be as in the previous discussion, i.e., the assignment of neigh-
borhoods to the point 2z € X. We have that for any p : 1 — PX such that N, o p(1) # &,
there exists a ¢ : 1 — PX such that

* q(1) < p(1),

e N, oq(l) # @, and, most importantly,

o Nyayop(l) =q(1).

20 CHAPTER 2. STRUCTURES

This establishes that p(1) is a neighborhood of every point in ¢(1). This is demonstrated
in the following diagram

P Nz
— ——r
1 - PX o X (2.13)

where NV, o p(1) = N 0 q(1) and (1) = Ny o p(1).
Thus we have demonstrated that topological spaces can be encoded as elementary
structures.

Example 2.3. Modules.
We now construct mathematical modules as elementary structures.

Axioms 2.3 (Module). Given a ring R and an abelian group M, a left R-module M
consists of M along with scalar multiplication - : R x M — M such that, for r,s € R and
a,b € M, the following axioms are satisfied:

IL.r-(a+b)=r-a+r-b
2. (r+s)-a=r-a+s-a
3. (rs)-a=r-(s-a)

4. 1-a=a

Note that all of these axioms can be encoded as (set-theoretic) fibered products, as
was done in Example 2.1 for monoids. For instance, we encode the first axiom with the
following pullback diagram:

(Rx (M x M)) xp (Rx M) x (Rx M)) ———— (Rx M) x (Rx M)

(2.14)

(R x (M x M)) M

We can construct similar pullbacks for axioms 2 and 3. The fourth axiom is simple, since
all we need is the map:
lg:1xM—M:(1,a) — a. (2.15)

What is unique about the situation with modules, however, is that there are two com-
ponent structures that are constitutive of the module: namely, the abelian group M and
the ring R. Nonetheless, when we refer to elements in a module M, we mean elements
in its underlying group M, so therefore the set M (forgetting its group structure) is the

2.2. STRUCTURES: NAIVE SETUP 21

underlying set of the module. Because of this, we need to define the group structure on M.
The relations that we require for this are all of those used in Example 2.1 for monoids, plus
some additional relations that establish the axiom that elements in groups have inverses.
For a group G with binary operation * : G x G — G, it is required that for every g € G,
there exists a ¢~' € G such that g x g7' = g7 x g = e, where e is the identity element.
Thus, let +: M x M — M be the binary operation on M. We have the endorelation

—M — M:a+— —a, (2.16)

assigning each element in M to its inverse. Then there is the requirement that a + (—a) =
—a+ a = e, which can be encoded in a number of ways. One way is as the fibered product

Mxy M —22 M
pr1 \\+ Idy (2.17)

M — M

which is such that + : M xpy M — M maps every pair (m,n) to the identity element
ee M.

We are essentially done in defining the module M. However, for many axioms we used
the set R without defining any ring structure on R. This is not really an issue, however,
since when we define a module we are generally only interested in how R acts on M, and
R’s action is encoded via the map - : R x M — M. Furthermore, the ring structure on
R will be implicit in the construction of M. For instance, in defining the third axiom, we
would want some fibered product

(Rx R)x M) xn (Rx (Rx M)) —2— Rx (Rx M)

- n) (2.18)

(RxR)x M : > M

where the morphism -(x,—) : (R x R) x M — M implicitly encodes ring multiplication
*: R x R — R. The idea of the morphism -(x, —) is that it will take a pair ((r,s),a) and
apply first r * s = ¢, and then t - a.

Encoding axiom 2 in a similar way would implicitly encode ring addition + : Rx R — R.

22 CHAPTER 2. STRUCTURES

We’d have again the fibered product
(Rx R)x M) xn (Rx M) x (Rx M)) —22— (Rx M) x (Rx M)

-) (2.19)

(RxR)x M o M
where -(+, —) again takes a pair ((r, s), a) and applies first r + s = ¢, and then ¢ - a.

Note that the specification of a ring R only depends on the specification of its additive
and multiplicative operators 4+ and *, since all other ring axioms of R are totally determined
by + and *. Since + and * are implicitly encoded in the construction of M, then we have
implicitly encoded the ring structure of R.

These examples make clear how classic mathematical structures can be encoded as
elementary structures. However, a common situation in mathematics is to construct new
structures from given structures. Conceiving of how to do this in the context of elementary
structures is thus the topic now to which we turn.

2.2.2 Compound Structures

SUMMARY. The intuition for constructing compound structures from basic structures is
discussed.

7§7

In many situations we would like to construct new structures from given structures. In
type theory, such construction schemes are called type constructors.” Some common type
constructors are the following:

1. Product types. Given objects A and B, we can form the product type A x B. If
A and B are sets, for example, then their product A x B is the Cartesian product
consisting of all pairs (a,b) where a € A and b € B.

2. Coproduct types. We can also form the coproduct type A + B. If A and B are sets,
then A 4+ B is the disjoint union of A and B.

3. Power types. The power type 2(A) consists of all subobjects of A. If A is a set, then
Q(A) is the usual power set construction P(A).

4. Function types. Given objects A and B, we can form the type B of functions
f:A— B.If Aand B are sets, then B4 is the set of functions from A to B.

"See for instance [11, p. 940] for formal discussion.

2.2. STRUCTURES: NAIVE SETUP 23

In general, however, one cannot apply such type constructors to any kind of objects.
Instead, the objects must behave in a certain way in order for such type constructors to
be applicable. For instance, sets can accomodate all of the aforementioned constructions,
but vector spaces cannot. If we are given a vector space V', we cannot in general construct
the power object Q(V).

However, we would like to carry these kinds of type constructors into the context of
structures. Intuitively, we would like each of the above type constructors to correspond to
the following kinds of constructions of structures:

1. Product structures. For two structures S = (A, R) and T' = (B, @), the product S xT
would consist of the Cartesian product A x B on the underlying sets, and such that
the A coordinate would inherit the structure given by R, whereas the B coordinate
would inherit the structure given by @). For instance, if R generates a total order on
A and @ generates a group structure on B, then a pair (a,b) € A x B consists of an
order position a and a group element b.

2. Coproduct structures. Using the same structures S and T, their coproduct S + T
would consist of the disjoint union of A and B, where the A portion of A + B has
the structure generated by R and the B portion has the structure generated by Q.
Again, assuming that S is a group and T a total order, then an element k € A+ B
is either an order position or a group element.

3. Power structures. For a structure S, a power structure ©(S) would consist of all
substructures of S. What it means for a structure to be a substructure of another
structure will be made precise when we move to the formal setup in Section 2.3.
Intuitively, one may think that Q(S) corresponds to the power set P(A) of the un-
derlying set of S, where each subset X C A has the structure of S restricted to the
X portion of A. However, we will see in the formal setup that the situation is even
more general than this.

4. Function structures. For structures S and T, the function structure 7% corresponds
to the set of functions f : A — B on their underlying sets, but with the intuition
that we are mapping the structure of .S to the structure of T'. For instance, assuming
that S is a total order and T' a group, then a mapping F': S — T is like picking out
a sequence of group elements from 7.

While these descriptions of structure constructions make sense intuitively, we cannot,
in general, achieve such constructions in the context of the naive formalism for structures
discussed above. To be able to apply such constructors to structures will require us to move
to the formal setup in Section 2.3, which will furnish us with a category of structures. We
will see that this category has the unique property of being a topos, and thus accomodates
all of the aforementioned type constructors.

24 CHAPTER 2. STRUCTURES

2.3 Structures: Formal Setup

SUMMARY. The rigorous theory of structures is presented. After establishing some techni-
cal preliminaries, we provide the formal definition of a structure. Once the formal setup is
provided, we will see that such structures furnish a category that consists of all structures.

7§7

We now move on to the formal theory of structures. The precursor of this theory is that
developed by Mazzola in [15]. In that text, Mazzola defines what he calls a form, which
is a generalization of a mathematical module. Although such forms are highly general
objects that accommodate a wide diversity of theoretical constructions, as demonstrated
by the plethora of Mazzola’s theories, they are not general enough to account for structure
as such. Thus, the following structure theory provides a necessary step in the direction of
generality, allowing for a broader range of theoretical competence.

In format, the following formal definition of a structure is nearly identical to the formal
definition of a form in [15, p. 63]. However, they are totally distinct kinds of objects, and
must be treated as such. Moreover, structures generalize forms, so it is possible to transport
Mazzola’s theories that are based on forms into theories that are based on structures.

2.3.1 Technical Preliminaries

SUMMARY. We present the technical foundations on which the theory of structures are
built. This will take us from the naive formalism of elementary structures to a rigorous
formalism that can accomodate more complex constructions.

7§7

2.3.1.1 Locally Small Categories

SUMMARY. The concept of a locally small category is introduced.
5

Let 6 be a category. For objects A and B in €, we denote by Homg (A, B) the collection
of morphisms f : A — B in 6. The collection Homg (A, B) is called a hom-collection.

Now it may be the case that a hom-collection is not a set, since it is too large. This is
why, in general, we speak of hom-collections rather than hom-sets. We say that 6 is locally
small if all hom-collections in € are sets. This of course implies that the hom-collections
exist in the category Set.

We now provide a proposition that will be important later.

Proposition 2.1. The category Rel is locally small.

2.3. STRUCTURES: FORMAL SETUP 25

Proof. For any two sets A and B in Set, their product A x B exists in Set. We also have
that for any two sets X and Y, the exponential YX exists in Set. Therefore Set is locally
small.

Since the collection of relations between sets A and B corresponds to the exponential
object 24%B in Set, we have that Homge (A, B) = 24%B, O

2.3.1.2 Contravariant Hom-Functors

SUMMARY. We present the notion of a contravariant hom-functor, and discuss its relation-
ship to presheaves.

7§7

Let 6 be a locally small category and X an object in €. We define a special kind of
functor from 4@ into Set.

Definition 2.3 (Contravariant Hom-Functor). A contravariant hom-functor is a functor
Homg(—, X) : € — Set, (2.20)
defined as follows:
1. Homg(—, X) maps each object A in € to the hom-set Homg (A, X).

2. Homg(—, X)) maps each morphism f: A — B in € to the function

Homg(f, X) : Homg(B, X) — Homg (A, X):g—go f. (2.21)

A generalization of a contravariant hom-functor is what is called a set-valued presheaf.
Such a presheaf is a contravariant functor into Set. Contravariant hom-functors are thus
special kinds of presheaves that are called representable presheaves. We call such a presheaf
representable because the idea is that we are representing X via the network of all perspec-
tives (morphisms) into X. We thus replace X in 6 with a functor the objects of which are
sets of morphisms into X, the idea being that such objects of morphisms provide partial
perspectives of X, and that X is equivalent to all the perspectives of X.

However, we may have only some morphisms into X. In that case, we do not have
a representable presheaf, but we still do have a presheaf. The idea of there being partial
networks of perspectives into objects is at the heart of the structure theory. Thus we have
the following

Principle 2.1. Insofar as collections of perspectives correspond to objects, different collec-
tions of perspectives give rise to different objects.

26 CHAPTER 2. STRUCTURES

2.3.1.3 The Yoneda Embedding

SuMMARY. The Yoneda embedding is presented.
T

Let [6°P, Set] be the functor category of presheaves on €. Assigning each object A in
46 to its representable presheaf Home(—, A) thus extends to a functor Y : € — [€°P, Set].
The Yoneda lemma® implies that this functor is full and faithful, and hence Y embeds
‘6 inside its category of presheaves. Thus we may essentially replace € with its category
of presheaves, without any loss of information. Moreover, the category of presheaves will
often have particularly nice features that € does not have by itself, such as limits, colimits,
a subobject classifier, and so on.

In our case, we will be using the category of set-valued presheaves over Rel. For
each object X in Rel, we denote its representable presheaf Hompgei(—, X) by @X, and we
denote the hom-set Homge) (A, X) by AQX. Furthermore, we denote the presheaf category
[Rel°?, Set] by Rel®.?

The idea is that elementary structures will be replaced by presheaves in Rel®. But how
does this work? The reason is that in our definition of an elementary structure S = (X, R),
we choose a set X and a collection of relations R = {Ri A — X } Now it is the case
that such a set R induces a presheaf Pr : Rel — Set. To see how, we first introduce the
notion of a sieve.

Definition 2.4 (Sieve). Let 6 be a category and X an object in €. A sieve C' on X
is a collection of morphisms with codomain X that are closed under precomposition with

morphisms in €. In other words, C is a collection of morphisms such that whenever
(f:tA—=>X)eCand (¢g: B— A) €6y, then (fog: B— X) e C.

In [14, p. 38] it is demonstrated that the collection of sieves on X is in one-to-one
correspondence with the collection of subfunctors of Homg(—, X). Thus for each sieve C' on
X we have a subfunctor C' C Homg(—, X). Hence for an elementary structure S = (X, R),
R induces a sieve on X via the closure of R under precomposition of morphisms in Rel.
Therefore we get the corresponding subfunctor of @X. Since we will often be starting with
an elementary structure S = (X, R) and deriving its respective presheaf in Rel@, we define
the map

Psh: | J P(U HomRel(A,X)>—>Rel@. (2.22)
XeRelg AeRely

The domain consists of the following. For each set X, we union over all of the hom-sets
that have X as codomain, and then take the power set. This way, we have all subsets of

8See [13, 59-62] for detailed discussion on the Yoneda lemma.
9This is inheriting the notation used by Mazzola in [17].

2.3. STRUCTURES: FORMAL SETUP 27

relations into X, which is what we need to define an elementary structure on X. Then we
simply do this for every set X in Rel. We map the resulting sets of relations in the domain
to their respective presheaves in Rel®.

2.3.2 Formal Definition of a Structure

SUMMARY. The formal definition of a structure is provided, along with discussion of the
parameters of a structure.

5
Definition 2.5 (Structure). A structure S is a quadruple S = (N, T, C,I), where:
1. N is the name of K; it consists of a string of symbols from the free monoid 91 over
some alphabet A. The alphabet can be thought to consist of all symbols from all
languages, both formal and informal, to allow for maximal freedom when it comes

to naming. We refer to the name of S via Name(S), or if no confusion is likely then
simply N(S5).

2. T is the type of S, and is one of the following symbols:

We refer to the type of S via Type(S), or if no confusion is likely then simply T(.5).
3. C is the coordinator of S, and it depends on the type T as follows:

(a) If T'is Simple, then C' is a set X.

(b) If T is Limit or Colimit, then C is a diagram!® D of structures.

(c) If T is Power or Sub, then C' is a structure.
)

(d) If T is Hom, then C' is an ordered pair (C7,C2) of structures.
We refer to the coordinator of S via Coordinator(S), or if no confusion is likely then

simply C(S). If T is Limit, Colimit, or Hom, then the component structures of
the coordinator are called the coordinator structures, or just coordinators for short.

0A diagram D : J — € is a functor, where J is a (very) small index category. The idea is that a diagram
picks out a collection of objects and morphisms in 6.

28

CHAPTER 2. STRUCTURES

4. T is the identifier of S, and is a monomorphism of functors I : Fu — A in Rel®.

The codomain A is defined as follows:

) If T is Simple, then A = QX.
) If T is Limit, then A = lim(D).
) If T is Colimit, then A = colim(D).
(d) If T is Power, then A = QFun(C),
) If T is Sub, then A = Fun(C).
) If T is Hom, then A = C’QCI.

The point of the identifier is that it associates the functor Fu of S with the functor
given by the type and coordinator. This is important especially for when T' is Sub,
as it enables us to define a structure as a substructure Fu of some larger structure
A in which it lives. In general, we denote the codomain of the identifier by Fun(C),
which is the functor of the coordinator. The domain Fu of the identifier is what

we call the functor of S. We refer to the identifier of S via Identifier(S), or if no
confusion is likely then simply I(S).

We denote a structure via the notation

Name — Type(Coordinator). (2.23)
I:Fu—A

We now provide the intuition for each parameter of a structure.

1. Name. Structures are provided with names for semiotic reasons. The name acts as

a signifier for the structure which is the signified. As we will see, the signification —
which is the process which relates the signifier to the signified — is provided by the
identifier parameter.

. Type. The type of a structure expresses the construction rule to be applied to the

coordinator. The types are described as so:
(a) Structures of type Simple are the most basic. They correspond precisely to
elementary structures.

(b) The Limit type generalizes the product type that we discussed above in Section
2.2.2. Specifically, consider the following. Suppose we have a diagram D of
structures, as so

51 ;) SQ Sg

2.3. STRUCTURES: FORMAL SETUP 29

The resulting limit lim(D) will be a subobject of the product S; x Sg x Ss,
consisting of those triples (a,b,c) € S; x Sy x S3 that satisfy the following
constraints:

a = g(c)

b = fla) = f(g(c)) (2.24)

= c
Therefore limits generalize products by allowing constraints to hold between the

coordinates. A product is thus a limit whose coordinator is a discrete diagram
of structures.

(c) Likewise, the Colimit type generalizes the coproduct type. Although colim-

its are categorically dual to limits, their concrete realization is much different.
Consider now the colimit of the previous diagram

51 ;) SQ 53

g

What the colimit colim (D) determines is an equivalence relation ~ on the dis-
joint union S 4 S2 + S3, where the equivalence relation is determined by f and
g. Specifically, for elements a € S1,b € Sa,c € S3, we have:

a~b iff f(a)=0b
c~a iff glc)=a
c~b iff f(g(c))=0

(2.25)

Thus colim(D) = (S1 + S2 + S3)/ ~. As with limits, a coproduct is a colimit
whose coordinator is a discrete diagram of structures.

(d) The Power type constructs the set'! of all substructures of its coordinator

structure. Specifically, a Power structure with coordinator A consists of all the
subfunctors of Fun(A).

(e) The Sub type constructs a subobject of its coordinator structure. The Sub

type is, from a formal standpoint, unnecessary. For instance, let

— Simple(X)

Fu—Q@X

"The fact that Rel is large may lead one to be skeptical of this type constructor, since it is generally
considered that the source category € of the presheaf category [€°P, Set] should be small, as discussed
e.g. in [14]. There are a number of rejoinders to this bureaucratic problem. One is that we may think in
terms of non-well-founded sets, so that we do not distinguish between small and large sets. Another point
is that any standard structure in mathematics will be determined by an elementary structure whose set
of generators is a small set, so it seems reasonable to think of structures as being determined by a small
amount of data. In the worst case scenario, one can simply take a small subcategory of Rel, and derive
therefrom a plethora of mathematical structures.

30

CHAPTER 2. STRUCTURES

be a structure. We can get a subobject of o via

¥ — Sub(X),
Gu—Fu
where Gu is a subfunctor of Fu. However, we could have just defined this
structure in the first step, via
¥ — Simple(X).

Gu—QX p ()
Nonetheless, the Sub type is important for practical reasons involving history.
We may wish to construct a structure S as a stepping stone to a more restricted
subobject S’ of S. Such intermediate constructions are ubiquitous in practice,
and we would not be able to achieve them without the Sub type.

(f) The Hom type constructs the collection of structure morphisms f : C; —
Cy, where C7 and Cy are the first and second coordinates, respectively, of the
coordinator C.

3. Coordinator. The coordinator is the ‘meat’ of a structure. It consists of the lower

level object(s), whereas the type is the rule for constructing a new object from these
lower level object(s).

. Identifier. As is explained in the definition, the identifier associates the functor of

the structure with the functor given by the type and coordinator of the structure.
For instance, if we have the structure

S — Limit(A, B),
Fu—Fun(AxB)
where the coordinator (4, B) is a discrete diagram, then the identifier associates Fu
to a subobject of the functor Fun(A x B). One of the main virtues of the identifier is
how it incorporates the distinction between concrete and abstract structures. This is
because the codomain A of the identifier is an object in Rel®, and the instantiation
of a structure S is a concrete object that is identified with (a subobject of) A. This
is like how in a computer program, we may assign the same value to two variables,
e.g. asin ‘x = 2’ and ‘y = 2. If we view such objects at a proper level of abstraction,
we see that although it is the case that the value of x is equal to the value of v, it is
not the case that the entire object ‘x = 2’ is equal to ‘y = 2’. They are isomorphic,
but not equal. Analogously, if we have two structures, such as e.g.
Fuj@>X Simple(X)

and

T Si le(X
Ftx imple(.X),

2.3. STRUCTURES: FORMAL SETUP 31

then we can say that S and T are equivalent, since they have the same identifier
monomorphism, but not equal, since the difference of their names corresponds to

there being two concrete instantiations of the abstract structure given by the identifier
Fu»— QX.

We thus get the category Str of structures where:
1. The objects are structures.

2. A morphism ¢ : § — T is a natural transformation of their underlying functors in
Rel®.

A last note is in order before moving on. In the context of forms in [15], there can both
regular and circular structures. Mazzola thus presents a definition,'? which we present here
but with ‘form’ replaced by ‘structure’:

Definition 2.6 (Regular and Circular Structures). Let w be an ordinal number.
1. A structure is regular of level w = 0 iff it is of type simple.

2. Suppose that regular structures of all levels ;1 < w have been defined. Then a
structure is regular of level w iff all its coordinator structures are regular of levels
1 < w, and if w is the successor of all the coordinators’ levels.

3. A structure is regular iff there is an w such that the form is regular of level w.
4. A structure is called circular iff it is not regular.

An obvious example of a circular structure S is one which contains S as a coordinator,
for instance
S — Limit(S,T).
fiFu—FuxFun(T)

Such structures are called circular for the obvious reason that they contain themselves.

2.3.3 Rel® as a Universal Concrete Category

SUMMARY. We contend that Rel® furnishes a universal concrete category — that is, a
category consisting of all the structured sets that can be thought to exist.

§

121bid., 76.

32 CHAPTER 2. STRUCTURES

A concrete category 6 is a category such that there is a faithful forgetful functor
U : 8 — Set.!> The idea is that 6 consists of objects that are sets with additional
structure. Thus the forgetful functor U assigns each object X in € to the underlying set
of X.

Since I contend that Rel® consists of all possible structured sets, I therefore make the
following

Conjecture 2.1. Every concrete category embeds fully faithfully into Rel®.

This means that Rel® is a universal concrete category in the sense that every concrete
category corresponds to a subcategory of Rel®. The next two sections (2.3.3.1-2.3.3.2)
justify this conjecture.

2.3.3.1 The Collection of Structures on a Given Set

SUMMARY. We discuss the technical machinery that provides all of the structures on a
given set.

7§7

For 6 a locally small category, the subobject classifier of [6°P, Set] is a Heyting algebra.
Thus, for a representable presheaf @X in Rel®, the poset of subobjects Sub(QX) is a
Heyting algebra, consisting of all subfunctors of @X. What Sub(@X) consists of is therefore
the collection of all structures that can be defined on the set X. If any kind of structured
set can be encoded as an object in Rel®, as we indeed claim, then for any concrete category
@, an object X in € whose underlying set is X will correspond to a functor in Sub(@QX).

We denote by =< the partial order relation on Sub(QX). For S,T € Sub(QX) we
have that S < T iff S is a subfunctor of T. If S is a subfunctor of 7', then this means
that the set of relations on X given by S is a subset of the set of relations on X given
by T. Generally speaking, if S < T, then this means that the structure generated by T’
is more specific than the structure generated by S. Contrarily, the structure generated
by S is more general than the structure generated by 7. This is best demonstrated by
an example. Suppose that S generates a monoid structure on X, as given by the kinds
of relations from Example 2.1. We know that monoids generalize groups, insofar as a
monoid is a just a group that doesn’t necessarily have inverses. Thus we should obtain a
group structure 7" on X simply by adding more relations to S. Specifically, we must add
those relations which establish the group axioms involving inverses. This means that the
relations from T would constitute a superset of the relations from S, and therefore S <XT
in Sub(@X). This clearly demonstrates that the order relation < corresponds to a relation
of specialization/generalization on structures. We can therefore say that if S < T', then S
is a generalization of T', whereas T is a specialization of S.

13[13, p. 26].

2.3. STRUCTURES: FORMAL SETUP 33

The poset Sub(@QX) thus comes equipped with two closure operators. For a functor
S € Sub(@QX), we have the closure operator

] (S)={8:5=5}, (2.26)
which gives the set of all generalizations of S. Likewise, we have the closure operator

1 (8)={S:5 =S}, (2.27)

which gives the set of all specializations of .S.

2.3.3.2 Structure Morphisms

SUMMARY. The intuition of a structure morphism is presented. Structure morphisms are
an essential component of the composition theory that is to be developed in the sequel.

7§7

Our objective in this section is to gain some intuition for the behavior of structure
morphisms. Specifically, we will now demonstrate the behavior of structure morphisms
between structures of type simple, so for the remainder of this section assume that the
structures that we speak of are of type simple. Also, since structure morphisms correspond
to morphisms on the functors of structures, we can forget about structure names in what
follows, and assume that structures are objects in Rel®.

In the following, assume that X and Y are the underlying sets of S and T, respectively.
Although a structure S is a functor, it corresponds to a structured set, so by abuse of
notation we can write x € S to express that x is an element in the underlying set of S
(soon we will see that we replace such elements z with certain morphisms that are indeed
in S). Thus the idea of a structure morphism f : S — T is that f associates structured
elements x € S to structured elements y € T. Since S and T are functors, the morphism
f corresponds to a natural transformation. By the definition of a natural transformation,
we have

1. for each A in Rel, a morphism f4 : S(A) — T(A) in Set, and

2. for each R : A — B in Rel we have f4 0 S(R) = T(R) o fp, expressed by the
commutativity of the following diagram on the right

A S(A) — T 7a)
R S(R) T(R) (2.28)
B S(B) ———— T(B)

34 CHAPTER 2. STRUCTURES

To see how f : .S — T maps structured points of S to structured points of T', consider
the following. Suppose that S contains all functions p : 1 — X, where p is a function from
the singleton set 1 to an element in the underlying set X of S. The function p thus picks
out an element of X, and since p is in the functor S, we can say that p picks out an element
in S. We call an arbitrary morphism R : A — X in S an A-addressed'* point of S, and
if R is a function, we can call it a functional A-addressed point of S. Therefore functional
1-addressed points p : 1 — X of S pick out elements in the underlying set X of S, and we
simply write p € S. So when we say e.g. that z € S, where x is in the underlying set X,
what we really mean is that the function p, : 1 - X : 1+— z isin S.

Since S is a functor, we then get

P 5 S(p) (dx)=Id xop (2.29)

X —— 8X)={... 1dx,...}

Thus, given p : 1 — X in Rel, we get a corresponding morphism S(p) : S(X) — S(1)
that sends the identity morphism Idy to Idy o p = p. In other words, S(p) essentially
establishes that p(1) € X is also a point of S. So this enables us to think of S as a set
with structure, and therefore to say that p € S.

Next, we need to evaluate T'(p : 1 — X), in order to understand the intuition behind
the morphism f : S — T. By the Yoneda embedding, f corresponds to amap f: X - Y
in Rel. This determines T'(p: 1 — X) as so

1 —TL s 1A)={....fop,...}

P T(p)(f)=fop (2.30)

X ——TX)={....f,...}

In other words, T'(p) sends the point p to p o f, which is equivalent to operating f(p(1)) in
Rel! So f does indeed associate the structured points of S with the structured points of
T, via the commutativity of the square in Figure 2.2.

It is important to note, however, that for such a structure morphism f : S — T to
exist, it must be the case that the corresponding morphism f: X — Y be in T'. If we would
like to perform such a mapping f : S — T, then we can assume that if f ¢ T" then there is
an ‘updating’ of the functor 1" that occurs ‘under the hood’.

It is also a good time to declare the following

Y This is following the terminology of [15].

35

2.3. STRUCTURES: FORMAL SETUP

TOY Ul { < X : | dew o} BIA POUIULIoGOP ST
surddew sty T, .7, Jo syurtod painjonigs o} dewr § jo sjutod poInjonijs Moy Smoys oIndy oy} ul arenbs oy, :g ¢ 9INS1]

d= od=
A..L&T..wHAN«vE Xprod=(Xp1)f A..LXUHT..wHCQ% X
(CON @s !
ANQOWFW”AHV,.H ROWHAQVR ﬁ ‘d* WHA._HV.W. X

36 CHAPTER 2. STRUCTURES

Convention 2.1. For any structure S, unless explicitly stated otherwise, assume that S
contains all functional 1-addressed points p: 1 — X of S’s underlying set X.

This convention is useful for a number of reasons, one of which is that it allows us to
refer to an element p € S with the intuition that we are referring to the element p(1) in the
underlying set X, which is such a common situation in mathematics. For instance, when
we refer to an element in a module by m € M, we are using set-theoretic notation even
though M is a module.

Since we have established that structure morphisms correspond to morphisms between
the underlying sets of the structures, it is obvious that the morphisms in concrete categories
correspond to structure morphisms. This is because a concrete category 6 has a forgetful
functor U that is faithful, and thus Homg (M, N) C Homget (UM, UN). So for any mor-
phism f: M — N in 6 we will certainly have a corresponding set map Uf : UM — UN
on their underlying sets, and this set map corresponds to a structure morphism in Rel®.

2.4 Construction Schemes of Structures

SUMMARY. The notion of a construction scheme of a structure is presented. The idea
is that a structure is, independently of its component structures, constructed via a se-
ries of construction rules. Defining such construction schemes will enable us to define an
equivalence relation on structures based on their construction schemes.

5

2.4.1 The Graphical Representation of a Structure

SUMMARY. We show how to represent structures graphically.
—§—

For a structure S, we can represent it graphically by a tree diagram that depicts its
hierarchical construction.!® For instance, suppose that S is defined as

S H) Limit(Sl, SQ, Sg)

Then we can represent S as a tree graph

S

Limit

N

Si S Ss

5As in [15, p. 52].

2.4. CONSTRUCTION SCHEMES OF STRUCTURES 37

However, this diagram is not complete, since the coordinator structures likewise branch
out to different structures. For instance, we may have the following:

S ? Limit(SH, 512),
So I—d> Power(521),

Ss3 oy Simple(QX).
Likewise, the coordinators of S; and Sy will likewise branch out, whereas the coordinator
@X of S3 cannot branch out further. We’d thus get a graphical representation as in Figure
2.3a.

Every regular structure can therefore be graphically represented as a tree graph that
terminates on sets.

Furthermore, notice that immediately below each structure is its type. In order to
derive a tree diagram that contains only structures, we may remove the types in the tree.
Also, since representable presheaves are not yet structures, we can remove them as well,
thus deriving a tree diagram consisting only of structures. The graphical representation
of S in Figure 2.3a thus simplifies to the graphical representation in Figure 2.3b. We call
such a reduced graphical representation of S the ramification tree of S, and denote it by
Tg. We can think of a ramification tree of a structure S as a directed graph (also known
as a quiver) whose initial vertex is S, and whose terminal vertices are simple structures.

2.4.2 Classification of Structures According to Construction Schemes

SUMMARY. The category of quivers is presented as a stepping stone to the category of
ramification trees. After defining the category of ramification trees, we are then able to
provide an equivalence relation on structures that classifies structures that are constructed
according to the same scheme.

7§7

At the end of this section we will present a category of ramification trees, which will
enable us to classify structures according to what will be called constructional equivalence.
But since the category of ramification trees is a subcategory of the category of quivers, we
first define quivers.

Definition 2.7 (Quiver). Let X be the following category:

0 @ (2.31)

_—
t

A quiver is a set-valued presheaf () : X°P — Set such that:

38 CHAPTER 2. STRUCTURES

S
Limit
Sy / S5 \ S5
Limit Power Simple
Sii / \ Stz o X

(a) The full graphical representation of the structure S.

S
S / S, \ Ss
PN |
S11 S12 So1

(b) The reduced graphical representation of the structure S.

Figure 2.3: Two kinds of graphical representations of the structure S: (a) provides the full
graphical representation, whereas (b) provides a reduced version.

2.4. CONSTRUCTION SCHEMES OF STRUCTURES 39

1. Q(0) =V is a set of vertices and Q(1) = E is a set of edges.

2. Q(s) : E — V maps edges to their source vertex and Q(t) : E — V maps edges to
their target vertex.

We thus get the category Quiv of quivers as the category of presheaves on X. We can
denote a quiver as a tuple Q = (V, E, s, t).

For quivers Q = (V, E,s,t) and P = (V', E’,§',t’), a morphism I" : Q — P corresponds
to a pair of morphisms 79 : V. — V' and 71 : E — FE’ such that s’ oy, = 790 s and
t' o1 =g ot, as given by the following diagram

E— 'V

t
Y1 Yo (2.32)
S/
BV

t/

Thus for a ramification tree Tg, we can recover the types of each constitutive structure
of S via the isomorphism Type(Tg) = T(Tg) that sends each vertex to its type. Technically,
the vertex set of the codomain of T will have to be a multiset of types, in order to preserve
the edge structure of the quiver, since the same type can occur at multiple different vertices.
For instance, the ramification tree Tg in Figure 2.3b would give the following quiver T(Tg):

Limit
Limit / Power Simple
Simple Simple Simple

We would next like to create a category of ramification trees. However, we first discuss
a couple equivalence relations on structures. The first equivalence relation is the obvious
one given by equivalence of types. That is, we have S ~; S" if T(S) = T(S’). A much more
rigorous equivalence relation would be one that takes into account the entire ramification
trees of structures. We will eventually define this equivalence relation, but first we define
an intermediate equivalence relation ~y as follows. Let S and S’ be structures such that
T(S) = T(S") = 7, and recall that we denote the coordinator of a structure A by C(A).
Then we define S ~y S’ as so:

1. If 7 is Simple, then S ~y S’.

2. If 7 is Sub or Power, then S ~; S’ if T(C(S)) = T(C(S")).

40 CHAPTER 2. STRUCTURES

3. If 7 is Limit or Colimit, then S ~; S’ if the following conditions hold:

(a) The coordinator structures of S and S’ are in bijection.

(b) Suppose the cardinality of the set of coordinators of S and S’ is n, and let
1= {1, e n} be the set that indexes the coordinators of S and S’. Then for
the symmetric group &,, there exists a permutation m € &,, such that for every
coordinator structure C; of S and D; of S’, we have T(Cr(;)) = T(D;).

4. If 7 is Hom, then S ~y S if T(C(S);) = T(C(S");) for i € {1,2}.

The equivalence relation ~ refines the equivalence relation ~;, since ~ also takes into
account the types of the coordinators. It is obvious how ~y classifies Simple, Sub, and
Power structures; however, understanding how ~y classifies Limit, Colimit, and Hom
structures requires some explanation.

If 7 is Limit or Colimit, then the ordering of the coordinators does not matter. For

example, if we have structures
S I—d> Limit(C, D)

and
S’ I—d> Limit(D, C),

then S and S’ are isomorphic. Same for if the type is Colimit instead of Limit. Hence
two (co)limit structures are equivalent by ~y if their coordinators correspond with respect
to type. For instance, suppose we have structures

T I—d) Limit(Cl, Cs, 03)

and
T - Limit(D;, Dy, D3),

such that T(C7) = Colimit, T(C2) = Power, T(C3) = Power and T(D;) = Colimit, T(D3) =
Power, T(D3) = Power. Then T~ T” since T' and T” both have one Colimit coordina-
tor structure and two Power cordinator structures.

On the other hand, for Hom types, the ordering of the coordinators does matter. For

instance, the structures
S 7y Hom(C, D)

and
S/ ? HOIII(D7 C)

are not in general isomorphic, since the set of morphisms from C' to D is not in general
isomorphic to the set of morphisms from D to C.

We defined this equivalence relation ~p because it provides some preliminary intuition
for understanding the justification for the types of morphisms that exist in the category of
ramification trees. We thus present this category.

2.4. CONSTRUCTION SCHEMES OF STRUCTURES 41

Definition 2.8 (Category of Ramification Trees). The category T of ramification trees is
the subcategory of Quiv defined as follows:

1. Its objects are ramification trees.

2. A morphism I' : Tg — T of ramification trees is a monomorphism of quivers such
that the following conditions hold:

(a) For every vertex v € Tg, we have T(v) = T(I'(v)).

(b) If T(v) = Hom, then for v’s coordinators v;,vy we require I'(v;) = w; and
F(’Ug) = wy.

Hence, a morphism I" : Tg — Ty is such that for each vertex v € Tg, we have v ~y I'(v).
Having defined the category of ramification trees, we can now define the equivalence
relation that we wanted all along, which we call constructional equivalence.

Definition 2.9 (Constructional Equivalence). Two structures S and S’ are construction-
ally equivalent if there is an isomorphism A : Tg — Tg/ in 7 on their respective ramification
trees.

Thus, the isomorphism classes of ramification trees in T classify those structures that
are constructionally equivalent to one another. Thus the skeletal category sk(7) of T is
the category whose objects are the isomorphism classes of ramification trees.

42

CHAPTER 2. STRUCTURES

Chapter 3

Compositions

3.1 Ontology

SUMMARY. We present the intuitive ideas underlying the ontology of the Composition
Theory to be developed in this chapter. A connection between our Composition Theory
and Aristotle’s hylomorphic theory of beings is made. We then outline the formal objective
of this chapter, where we suggest the path that we will take to develop a universal method
of encoding.

7§7

The objective of this chapter is to provide a universal method for encoding any kind of
object whatsoever. We are thus tasked with constructing an ontology that is not restricted
to this or that domain of knowledge, but rather the entire domain of human knowledge. 1
claim that the Composition Theory provides an ontology that is both open — meaning that
it allows for the construction of hitherto unidentified objects — and universal — meaning that
it provides the tools for rationally constructing any object whatsoever. The coexistence
of openness and wuniversality may seem difficult, but it is implied by the philosophical
assumption that there is a certain invariant aspect of human thought, that is independent
of any historical epoch. I would say that this invariance is a linguistic faculty, which
I contend is the condition for memory of facts, and therefore a condition for the world
as we know it. When we encounter completely novel objects, we engage with them via
explication’ — that is, we try to provide adequate descriptions that somehow capture the
‘nature’ of the object. It is this action of explication, which takes place between ‘subject’
and ‘object’, that is the condition for the emergence of phenomena. 1 consider this action
to be that of structuring.

The following dicta serve as an informal basis:

!See [5, Ch. 1] for Carnap’s account of explication, or also Chapter 6 for my own discussion.

43

44 CHAPTER 3. COMPOSITIONS

Dictum 3.1. Being = Thought, and Being/Thought consists of structures + the act of
structuring.? Hence

structures + the act of structuring = Thought = Being.

Dictum 3.2. Thought takes place between two limits: a psychological limit and a physical
limit. These two limits are often referred to as ‘subject’ and ‘object’. However, subjecthood
and objecthood are themselves generated via the relation between the psychological limit and
the physical limit.

Dictum 3.3. It is the ‘betweenness’ of the psychological and the physical that generates
Thought.

Dictum 3.4. What ‘exists’ at the two poles of the psychological and the physical I call
non-Being.

Dictum 3.5. The pole of the psychological, independent of the physical, is the limit point
of certain kinds of spiritual states. In such states, phenomena vanish, as does Thought. It
is a state of consciousness without form and without concepts. It is the fact that we have
memory of such experiences that enables us to speak of these states after the states them-
selves cease. Hence such experiences become the object of Thought, while the experiences
themselves remain external to Thought.

Dictum 3.6. No claim can be made about the pole of the physical, since any claim about
the physical necessarily entails the relation between psychological and physical.

Dictum 3.7. A universal method for encoding phenomena thus corresponds to a universal
method of Thinking. A universal method of Thinking, in turn, corresponds to a universal
ontology, insofar as Being = Thought.

3.1.1 Composition Theory as an Abstract Hylomorphism

SUMMARY. The connection between Composition Theory and Aristotle’s hylomorphic
theory of beings is presented. We will see that what we call compositions correspond to
what Aristotle calls substances.

7§7

Aristotle’s hylomorphic theory® contends that beings consist of matter and form. The
matter of an object is the ‘stuff’ from which it is made, whereas the form is how the matter
is organized. For instance, a wooden chair has wood as its matter and the chair shape as its
form. Such a compound of matter and form is what Aristotle calls a substance. However,

2This is in line with the Parmenidean thesis that Thought is Being.
3See [2] and [1] in [3].

3.1. ONTOLOGY 45

substances can themselves serve as the matter for a higher order substance. For instance,
a wooden chair is a substance, and a classroom can also be conceived as a substance that
has for some of its material wooden chairs. Another example is words. The matter of
words is letters, whereas the form is the ordering of letters. Words of course serve as the
matter of sentences, and sentences serve as the matter for paragraphs, and so on. Thus,
the hylomorphic ontology conceives of beings as hierarchical constructs that are recursively
defined in terms of matter and form.

Just as substances are built by iterative processes of forming, they can be unpacked by
iterative processes of unforming. The latter consists of iteratively extracting the matter
from a substance, until eventually a level of ‘prime matter’ is arrived at. Aristotle calls
this primary material ‘pure potentiality’, and it is characterized by being able to take any
form whatsoever.

The Composition Theory that we will present in this chapter realizes an abstract kind
of hylomorphism. We are able to define e.g. words as compositions in the same way that
Aristotle conceives of words as substances: i.e., they consist of letters for material and
have the form of a total order. In the following formalism, we would say that a word is a
(compound) composition whose lower level compositions are letters, and which is formed
by mapping these letters to totally ordered sets. Likewise we would say that these letters
are compositions, and so on.

However, compositions are abstract objects, and are built on the structures defined in
Chapter 2. Due to the the abstract nature of compositions, we have no reason to assert
that there is an absolute ‘prime matter’ which is the origin of all things. As we will see,
we do have primary levels of compositions — called elementary compositions — but they
are relative to context, and are simply the starting points for higher order constructions.
Furthermore, the elementary compositions are defined analogously to compound composi-
tions, and therefore themselves have a form (or, to be more precise, a structure). There is
thus no composition that does not have a form.

Our composition theory is also more general than Aristotle’s hylomorphic theory. For
instance, we can construct a composition that is not so much a formed material, but a
concrete realization of an abstract structure. As an example, we can define something very
similar to a set-valued functor F : J — Set as a composition.? In this case, J is like an
abstract structure that is given a concrete realization via F'. This is a common situation in
database management theory, where there is a schema, corresponding to J in our example,
and a database, corresponding to F'(J). The functor F is an instantation of the schema J;
in other words, F'is a concrete realization of an abstract structure.’

Our concept of a composition also extends beyond mere particulars, and accounts for
classes as well. A composition corresponding to a particular is called a determinate compo-
sition, whereas a composition corresponding to a class is called a determinable composition.

1See Example 3.2 below.
®See [6].

46 CHAPTER 3. COMPOSITIONS

This is an important generalization of Aristotelian hylomorphism since in many situations,
when we refer to an object we are implicitly referring to a class of objects. For instance, in
music if we refer to a note via its pitch-class name, such as C, we are implicitly referring
to the class of C' pitches of all the octaves.

The above discussion provides the intuition for what a composition is. However, since
our definition of composition is grounded upon mathematical foundations, it is difficult to
generalize informally about the full semiotic range covered by the concept of a composition.
Like many situations in mathematics, the generality of the formalism transcends what is
comprehensible intuitively. Therefore we are limited in what we can say informally about
compositions: at some point, we must simply jump into the deep end and wrestle with the
beasts.

3.1.2 Towards a Universal Method of Encoding

SUMMARY. We outline the formal objective of this chapter, which is to achieve universal
method of encoding.

7§7

The formal objective of this chapter is to outline a hierarchic construction scheme for
compositions, where a composition from each ‘level’ of composition encodes the information
of all lower level compositions that constitute it. In particular, this requires the encoding
of the structures of the lower level compositions. For instance, if we want to define a
composition consisting of spatial objects ordered in sequence, then we would want to define
an ordering of those objects while still encoding their spatial information. This situation
contrasts with material set theories such as ZFC, where we can have sets consisting of
structured objects, yet where the structures of those objects is not encoded in the set, since
the set is only defined up to its elements. For instance, if we have a set X of topological
spaces, we can impose a total order on X to endow it with structure. Nonetheless, the set
X itself does not encode the topological structures, since the topological spaces are merely
elements of X. This is not the intuitive situation, since if we observed e.g. a collection of
material objects (with topological structure), then the structures of those objects would ‘fill’
the collection, instead of the structures being replaced by the abstract ‘element’ relation.
An example will make this idea clear.

Suppose we have a collection B of bricks, and we wish to build a house with them by
organizing them in space. We can imagine the forming of these bricks into the structure
of a house by mapping them into three-dimensional space R3. The problem arises when
we try to map B into R3, via some function f : B — R3. In this case, we can only map a
brick b € B to a single point in R?. Obviously a brick does not take up a single coordinate
in R3, since the brick itself has a spatial constitution. What we would want to do is define
some three-dimensional structure for each brick, and then map these three-dimensional
objects into R3. But we want to define a structure on the set of all bricks, in order to

3.2. ELEMENTARY COMPOSITIONS 47

construct a single composition (viz. a house). So we need a map from the collection of
bricks into R3, but these bricks cannot be represented as mere points, as they are in set
theory. Therefore we need a ‘collection’ of these bricks that contains the information of
their three-dimensional structure, while still preserving the distinction between each brick.
We will see that there is a natural way to do this via colimit structures.

Our second objective is to define a universal scheme for defining higher order compo-
sitions in terms of a given set of lower level compositions. This way, each new level of
composition is generated via application of the scheme.

Achieving these objectives will enable us to formally define a hierarchy of compositions.

3.2 Elementary Compositions

SUMMARY. Elementary compositions serve as the basis for all higher order compositions.
We thus present a formal definition, along with some examples. We then demonstrate how
to canonically encode elementary compositions as structures, which is a necessary step for
constructing multilevel compositions.

7§7

3.2.1 Formal Definition

SUMMARY. The formal definition of an elementary composition is presented, along with
some examples.

7§7

Definition 3.1 (Elementary Composition). An elementary composition K is a triple K =
(N, D, C), where:

1. N is the name of K; it consists of a string of symbols from the free monoid 9t over
some alphabet A. The alphabet can be thought to consist of all symbols from all
languages, both formal and informal, to allow for maximal freedom when it comes to
naming. We refer to the name of K via Name(K), or if no confusion is likely then
simply N(K).

2. D is one of the symbols Determinate or Determinable; it is called the determi-
nation type of K, and denoted by Determination(K), or if no confusion is likely then
simply D(K).

3. C depends on T as follows:

(a) If D = Determinate, then C is a structure morphism ¢ : S — 5’.

48

CHAPTER 3. COMPOSITIONS

(b) If D = Determinable, then C' is a family of structure morphisms ® = {(¢; :

SZ‘ — Sz/)}z el
C is called the content of K, and denoted by Content(K), or if no confusion is
likely then simply C(K). We refer to the domain(s) of C' by dom(C). Thus if
D is Determinate then dom(C) is a structure, whereas if D is Determinable
then dom(C') is a set of structures. Likewise, we refer to the codomain(s) of C' by
cod(C). Furthermore, if D is Determinable, then each element ¢; € ® is called a
determination of K.

To denote an elementary composition K = (N, D, ('), we write

N :D(C). (3.1)

We will see examples later in this section.

We now provide the intuition for each parameter of a structure.

1. Name. Compositions are provided with names for semiotic reasons. Since the content

of a composition is the ‘meat’ of the composition, we can imagine that the name refers
to the content.

. Determination type. The determination type specifies whether the composition is a

particular or a class. Allowing a composition to be a class is important for situations
in which we want to denote an individual object which can be realized in diverse
ways. For instance, suppose we wish to denote the letter X. In the abstract, we could
say that X is a determinate composition; however, according to another view, we can
conceive of X as a class of compositions, each of which is a particular realization of X,
so that such determinations of X differ with respect to e.g. font. Nonetheless, we still
would like to refer to X as a single object, which is why we allow for determinable
compositions.

. Content. The content is the ‘meat’ of a composition. In some contexts, it will make

sense to think of the domains of the content as abstract structures that are realized
concretely by embedding them in the codomains. For instance, if we have the content
¢ : G — S where G is a directed graph and S some state space, then ¢(G) realizes
the process of moving between states in S. So we have the abstract structure of G
that is realized as a concrete process in S.

We now provide some examples of elementary compositions.

Example 3.1. Letters.

In an Aristotelian fashion, we can define letters as elementary compositions. Consid-

ering that a letter can be realized in myriad contexts — for instance, in different fonts and
locations — we can let its determination type be Determinable.

3.2. ELEMENTARY COMPOSITIONS 49

Let us therefore define the letter X, as an example. First, we will define the domain
of its content. Let I = [0,1] be the unit interval, considered as a topological space. We
demonstrated how to construct topological spaces as elementary structures in Example 2.2,
so let T be the set of generators that endow [0, 1] with its usual topological structure. By
Equation 2.22, we then get the presheaf PSh(t) = Fu. We thus encode I as the structure

I Simple(@|0, 1]). 2
o, Simple(al0. 1) (32)

Next, define the singleton structure

1 - Simple(@1). (3.3)

Let m : 1 — I be a structure morphism that maps the single element of 1 to the midpoint
0.5 of I. We then define D as the following diagram

1 —" 57T
m‘/ (3.4)
I

and take the colimit of D to get a pushout, thus deriving the structure
Tu,I I—d> Colimit(D). (3.5)

The structure 1 U,, I is the topological space consisting of two copies of I that are connected
at their midpoint.® This provides the topology of the letter X, which will be used as the
domain of the content when we define X as a composition.

Since X can exist at any position in space, we can define three-dimensional space as a
vector space V conceived as the structure

V — Simple(R?). 3.6
s SIMP e(R”) (3.6)

We can then map I U; I into V' in many different ways to generate different instances of X.
Therefore we define X as an elementary composition

X : Determinable({¢; : I U; I — V} (3.7)

jed):
We can proceed similarly to construct other letters of the English alphabet.

Example 3.2. Functors.

In topology, such a construction is called an adjunction space.

50 CHAPTER 3. COMPOSITIONS

We can construct an elementary composition that behaves very much like a functor,
such as D : J — Set where J is an index category. To create such an elementary compo-
sition, we will translate J and D(J) into structures, and D into a structure morphism.

First, we can translate J into a quiver. Let V be a set in bijection with Jy and F a set
in bijection with J;. We will use V as a set of vertices and F as a set of edges to construct
a quiver isomorphic to J. The usual way to define a quiver is how we defined it in Section
2.4.2, i.e., we define maps s : E — V and t : F — V, where s maps an edge e to its source
vertex and ¢ maps e to its target vertex. However, we will proceed in the opposite way,
by defining two maps s : V — FE and t : V — FE, where s associates a vertex v to the
collection of edges whose source is v and t associates v to the collection of edges whose
target is v. Such morphisms are clearly not, in general, functional, since a single vertex v
can have multiple edges whose source/target is v. Thus, for I' = { s, t}, we can define the
structure

Quiv — Simple(QF). (3.8)
PSh(I)—QE
The idea is that the elements e € Quiv define a category, where the identity arrows
identify objects. This is one way to define a category, since we can replace the objects of
any category with the identity morphisms, thus providing an ‘arrows only’ definition of a
category.

Now we define D(J) as a structure. For each X € D(J)p, we want to define the
structure corresponding simply to the set X. Our approach is thus the following. First, we
define an elementary structure X = (X, Rx). Rx must contain each functional 1-addressed
point pt, : 1 — X, where pt,(1) = x. Such functions specify the elements of X. We will
also need to add some other morphisms to Rx: namely, for each morphism f : Y — X
in D(J), we require that f € Rx. We can denote this set by Homp)(—, X). Therefore
Rx = {ptx}xex U Homp(s)(—, X), whence we derive the structure

— Simple(QX). 3.9

PSh(Rx)—@X imple(@.X) (3:9)

Now, replacing each X € D(J)g with X € Strg and each morphism (f : X — Y) €

D(J); with the structure morphism (£ : X — ¥Y) € Str, we get a diagram D in Str. For
each morphism £ : X — Y in D, we get the limit structure

lim(f) —> Limit(X £ 9 (3.10)

consisting of ordered pairs (a,y) such that f(x) = y. The limit structure thus encodes the
structure morphism as a structure. Thus, for all functions D(J);, we get the corresponding
collection of structure morphisms &, and for each £ € F we encode it as a limit structure.
We then take the coproduct of all such structures

coprod(lim(f) e) 7y Colimit(lim(f),...,lim(R)), (3.11)

3.2. ELEMENTARY COMPOSITIONS o1

and use this to obtain the power structure

Str(D(J)) o Power (coprod(lim(£)peF)), (3.12)

which corresponds to D(J). Str(D(J)) contains all subobjects of coprod(lim(f)ses), and
thus contains lim(f),...,lim(%).

Now we can define a structure morphism @ : Quiv — Str(D(J)) that corresponds to
D : J — Set. & sends each edge e € Quiv to D(e) = lim(f) € Str(D(J)). Specifically, for
a : i — j amorphism in J such that D(a) = f : X — Y in Set, we get an edge e, € Quiv
such that

D(eq) = lim(f). (3.13)

Note that for an object i in J such that J(i) = X, we get an edge erq, € Quiv such that
QB(eIdi) = lzm(Idgx) (3.14)

However, since lim(Idy) ~ X, we can just let D(erq,) = L.
Thus we encode a functor D : J — Set as an elementary composition

DComp : Determinate (Quiv 2, Str(D(J))). (3.15)
Let’s see a concrete example. Let Quiv denote the set of edges from the following index

category J

j (3.16)

D(i)=X
\D(o:):f
D(v)=h D(j)=Y (3.17)

52 CHAPTER 3. COMPOSITIONS

Suppose X = {a,b},Y = {p,q,r}, Z = {x,y}, and let f, g, h be given by

X Y VA X
/ g h
a > D > X > a
% (3.18)
! h
b———¢q y——b

We translate X, Y, Z into X, %Y, Z, and thus we get the limit structures

. o . f
(1) lim(f) — Limit(X > Y) ~ {(a,p),(b,9)},
(2) lim(g) Y Limit(Y % %) ~ {(p,2),(q,2),(r,y)}, (3.19)
(3) lim(h) — Limit(Z Lay - {(za),b)}),
which correspond to the set maps f, g, h. The squiggly arrows pointing to the sets of pairs

shows what the limit structures correspond to as sets.
Taking the coproduct of the structures, we get

coprod (lim(£)pes) 7Y Colimit(X, lim(£), Y, lim(g),ZE, lim(f)) (3.20)
and then, as in Equation 3.12, the power structure

Str(D(J)) Y Power (coprod(lim(f)es)),

which contains X, lim(£),¥Y,lim(g),Z,lim(f) as elements.
Thus we have
DComp : Determinate (Quiv 2, Str(D(J)))

as the elementary composition whose content is depicted as in Figure 3.1. The idea is
that for each morphism « : i — j in J that gives D(a) = f : X — Y in Set, we have «
represented as an edge in Quiv, and f represented as a limit structure lim(£) in Str(D(J)).
Although an unusual encoding, it does indeed get the job done of translating a functor into
an elementary composition.

Example 3.3. Points of a structure.

As a final example, we consider the situation in which one wishes simply to pick out a
point of a structure. For instance, suppose one wanted to specify a composition as some

3.2. ELEMENTARY COMPOSITIONS 93

Figure 3.1: To the left is the quiver Quiv and to the right the structure Str(D(J)). Note
that the edges in Quiv correspond to limit structures in Str(D(J)), because the limit
structures encode the morphisms that are expressed by the original diagram D(.J).

collection of frequencies, in order to specify a sonic spectrum. In this case, we can define
a structure
Freq — Simple(R 3.21
q — Simple(R) (3.21)

that defines a vector space on R. Then we can take

FreqColls Y Power(Freq) (3.22)

to get the structure that contains of all subsets of frequencies. Then we can simply define
a functional structure morphism f : 1 — FreqColls to specify a set of frequencies, thus
providing our elementary composition

thisSpectrum : Determinate (1 EN FreqColls). (3.23)

For such a composition, there is also another way to denote the same collection of
frequencies from FreqColls. This involves Mazzola’s concept of a denotator as discussed
in [15], in the context of the category Mod of modules. For modules M, N, and QN
the representable functor of IV, an M-addressed denotator corresponds to an element d €
M@N, where M@QN is the set of morphisms from M to N in Mod. We say that d is an
element of the functor QN.

54 CHAPTER 3. COMPOSITIONS

The idea, then, is that we can denote a subset of frequencies in Freq as an element of
the functor of F'reqColls. For instance, by Convention 2.1, we can assume that the functor
Fu of Freq contains all functional 1-addressed points of R. Hence, for every x € R, we
have an element pt, € 1@Fu that picks out . Thus there will be a subfunctor Gu — Fu
such that 1@QGu C 1@Fu, where 1@Gu determines a subset A C R. Therefore when
we take the power structure FreqColls, we get the set 1QGu corresponding to an element
A € 1@0QF" ~ 1@FreqColls. Thus we can say that the subset A of frequencies corresponds
to a l-addressed denotator of FreqColls.

Nonetheless, since we can encode denotators as elementary compositions, it is not
necessary to incorporate the concept of a denotator.

3.2.2 The Canonical Encoding of Elementary Compositions as Struc-
tures

SUMMARY. The canonical method of translating elementary compositions into structures
is presented. This is a crucial step for defining higher order compositions.

7§7

We can translate elementary compositions into structures in a canonical way. The
method of translation depends on whether a composition is determinate or determinable.
The former case is simple while the latter requires some more explanation, so we’ll start
with the former.

The reason that we discuss these translations is practical, since it is a necessary step
in defining compound compositions. We will see later that once we define a collection of
compositions, we translate them into structures, and use these structures as the material
of higher order compositions. There is thus a recursive scheme for defining higher order
compositions in terms of lower level compositions.

3.2.2.1 Translation of a Determinate Composition Into a Structure

SUMMARY. We provide the canonical method for translating determinate compositions
into structures.

7§7

Let
Comp : Determinate(S 2, T)

be a composition. We translate it into a structure via

CompAsStructure Y Limit(S 2 T). (3.24)

3.2. ELEMENTARY COMPOSITIONS 95

So we are translating determinate compositions into structures by taking the content (i.e.,
the structure morphism) of the composition, and using it as the coordinator of a limit
structure. Thus, we are essentially mapping structure morphisms to limit structures, which
we may define as the map

G&ﬁMSHgéﬁﬁz@m&%ﬂhﬂNT?mmwSiT» (3.25)

Note that 91 consists of the namespace used for constructing the names of structures, so
therefore

Gumw:Ninmmwﬁn. (3.26)
3.2.2.2 Translation of a Determinable Composition Into a Structure

SUMMARY. We provide the canonical method for translating determinable compositions
into structures.

7§7

Let
Comp : Determinable ({5} Lhy Tk}keK)

be a determinable composition. By Equation 3.25, we can encode each of its determinations
o : Sy — T as a limit structure

Gte(Dety AsStructure, py) = Detp AsStructure ? Limit(Sy LN Ty).

Let Str(Comp) denote the subcategory of Str consisting of the following:

1. The set Str(Comp)g of objects consists of all determinations DetyAsStructure of
Comp, taken as structures.

2. The set Str(Comp); of morphisms consists of all structure morphisms that exist
between the objects in Str(Comp)y.

Now, define a diagram D : J — Str(Comp) that is bijective on objects. We then encode
Comp as a structure via

CompAsStructure 7y Colimit(D).

A determination of CompAsStructure can also be encoded as a structure. For each deter-
mination ¢y, we get the canonical injection Dety, N CompAsStructure. This thus gives
back the structure

Dety AsStructure 7y Limit(Dety, <5 CompAsStructure).

56 CHAPTER 3. COMPOSITIONS

The reason that we defined the diagram D is because it has the potential to determine
an equivalence relation on the determinations of CompAsStructure. To see why this
is important, consider Example 3.1 where we discussed the letter X as a determinable
composition. Translating X into a structure, we’d have

X AsStructure o Colimit (D).

In this case, we have the encoding of each determination ¢, of X as a structure

X Dety, — Limit(I Un, I Zh V).

Recall that K is the index set of the determinations {gpk} heK For each j,k € K, it
makes sense to define an epimonic map ¢ : X Det; — X Det, such that the diagram

XDet; ——— XDety,

pr pry (3.27)

Tun,l — TU, I

commutes. The commutativity of the diagram means that (’s action on the first coordinate
I'Up, I of X Det; corresponds to the identity map Idy,,7. So we can conceive of ¢ as a pair
¢ = (Idru,,1, f), where f : V — V. This is because I Uy, I is fixed for all determinations of
X, and the only thing that changes between X’s determinations is the spatial incarnation
in V of the topology of I U,, I. Therefore it makes sense to define epimonisms between
all determinations X Det; of X AsStructure, since this establishes the equivalence between
any two points (i,v) € XDet; and (¢/,v") € X Dety, under the condition that i = /. We
will see later why establishing such equivalences is important.

3.3 Steps to Constructing Composition Hierarchies

SUMMARY. We take the necessary steps in defining hierarchies of compositions. We first
present the notion of a basis of compositions, which is a basis from which we construct
higher order compositions, called compound compositions. However, since it is not so
straightforward to define compound compositions, we must take an intermediate step and
define the notion of a composition constructor. This will enable us to easily define what is
called a super domain. The way that all of these concepts hang together naturally leads
us to define what constitutes a hierarchy of compositions, which is a crucial notion that
guarantees the universality of our ontology.

7§7

3.3. STEPS TO CONSTRUCTING COMPOSITION HIERARCHIES 57

Like Aristotle, our main idea is that compositions are hierarchical objects that are
composed of lower level compositions, and that these lower level compositions are, in turn,
composed of even lower level compositions, and so on. Thus, for a set B of compositions,
we can construct new compositions using those of B as material. We call B a basis of
compositions, and a set X of new compositions composed with those of B a super domain
of compositions. We will see, however, that we cannot conceive of such sets as actual
sets, because of the discussion in Section 3.1.2. Therefore we will have to convert sets of
compositions into another type of object that is not a set, but which behaves very much
like a set.

3.3.1 Basis of Compositions

SUMMARY. We present the notion of a basis of compositions, which will require us to
translate compositions into structures. We will see that a basis of compositions corresponds
to a diagram in Str.

§

A basis of compositions B is a collection of compositions used to construct higher order
compositions. For instance, with respect to words, we can say that a set B of letters is a
basis of compositions.

If B is a set of elementary compositions, then B is called an absolute basis of compo-
sition, since there are no lower level compositions from which each K € B is constructed.
For any basis of compositions B, a collection of compositions constructed with the com-
positions of B is called a super domain of compositions (over B). When the context is
clear, we will simply refer to a basis of compositions as a basis, and a super domain of
compositions as a super domain.

Given a basis B, we need to translate each composition K € B into a structure. We
require this translation because in order to construct higher order compositions, we need
to combine compositions in B together, and then convert this combination into a structure
to be used as the domain of the content of a new composition. The idea is that we are
forming the compositions into a higher order object. This is like a composer constructing
musical figures with a collection of pitches, or someone building a house with a collection
of bricks.

Our current task is to translate B into a category whose objects are structures. Specif-
ically, we will define a functor B : B — Str, where B is a discrete category.” Our transla-
tions of determinate and determinable compositions in Section 3.2.2 laid the groundwork
for performing this translation, so let us now turn to how we define the functor 5.

For a composition K, to be concise let dom(K') resp. cod(K') denote dom(Content(K))
resp. cod(Content(K)). Given B, we define 8 : B — Str as follows. For each K € B:

"That is, we interpret B as a category whose objects are the elements K € B and where we only have
identity morphisms.

58 CHAPTER 3. COMPOSITIONS

1. If K is Determinate, then B sends K to the limit structure

Str(K) — Limit(dom(K) % cod(K)).

2. If K is Determinable, then:

(a) Translate each determination ¢; of K into the limit structure
Str(Kper,) —» Limit(dom(K); 2 cod(K);).

Let Str(K pets) denote the subcategory of Str that contains all determinations
Str(Kpet;) as objects and all structure morphisms 7 : Str(Kpet;) — Str(K pet;)
between any two such structures as morphisms.

(b) Construct a diagram D : J — Str(Kpets) that is bijective on objects.

(¢) Derive the colimit structure

Str(K) Y Colimit(D).

Thus B sends K to Str(K).
We can specify B as a pair B = (B, Dia), where:
1. B is a basis.

2. Dia : Bic — @ is a map from the subset C' C B of determinable compositions in B to
the set® of all diagrams in Str, sending each K € C to a diagram D : J — Str(Kpess),
as outlined above.

This would provide the necessary data to define the functor 8 : B — Str.

Since B is a discrete category, then B(B) is likewise discrete. In the next section, we
will see how to use B to define constructions of higher order compositions. From now on,
we will refer to B(B) as simply 8.7

3.3.2 Compound Compositions

SUMMARY. Compound compositions are compositions that are built from lower level com-
positions. Although this idea is simple in its conception, to define compound compositions
rigorously is rather difficult. We therefore must provide some technical groundwork.

8To avoid issues of this set being large, we can restrict to the small set of diagrams D : J —

Hxep Str(Kpets).
9Note that this is simply the usual way we denote diagrams. That is, for a diagram D : J — 6, we

don’t refer to D(J), but simply D for short.

3.3. STEPS TO CONSTRUCTING COMPOSITION HIERARCHIES 59

7§7

When we define an absolute basis B of elementary compositions, we can use these com-
positions to create new compositions. We call these higher order compositions compound
compositions.

3.3.2.1 Composition Accumulators

SUMMARY. Composition accumulators correspond to multisets of compositions, and are
to be used as the material for higher order compositions. However, we cannot define
composition accumulators simply as multisets, so we must construct a new kind of object
that behaves like a multiset, yet which is distinct.

7§7

Given a basis B, a compound composition S over B consists of a collection of com-
positions from B that are formed together in some way. For an elementary composition
K € B, we allow multiple occurrences of K in S. For example, if we have B consisting of
atoms from the periodic table and we wish to construct an HoO molecule as a compound
composition, then HoO consists of 2 hydrogen atoms and 1 oxygen atom. For a compound
composition S, we call its subset X C B of basis compositions the support of S and the
function assigning each S € X to its quantity of occurrences in S the multiplicity of S.
Thus for H2O, its support is the set X = {hydrogen, oxygen} and its multiplicity is the
function m : X — N such that m(hydrogen) = 2 and m(oxygen) = 1. Therefore the pair
(X, m) determines a multiset. We call such a pair A = (X, m) a composition accumulator
over B.

Since we are using the category B to carry out compound composition constructions,
we want to translate the above multiset convention into a categorical setting. Let J be
a discrete index category. We get a composition accumulator A over B as the colimit
of a diagram D : J — 8. Since J and B are discrete, D is in essence a set function,
and A = colim(D) is a coproduct of structures. D(J) gives the support of A, denoted
by sup(A), whereas the fiber of each element K € D(J) gives the multiplicity function
of A, denoted by mul(A). For example, if J = {ji,j2} and D(j1) = D(j2) = K, then
sup(A) = {K} and mul(A)(K) = 2. This means that A accumulates two instances of the
composition K € B (or, equivalently, two instances of the structure Str(K) € B).

Note that in the naive setting, we defined A as a multiset, where X was the support
and m assigned multiplicities to the elements x € X. In the categorical setting, however,
A is not a multiset, but a disjoint union of structures. We need to explain why this is
important. It is clear that each K € B contains deep information, such as whether it is
determinate or determinable, and, especially, what its content is. But if we had a multiset
A over B, we could not encode this information of each K within A, since an element in
a multiset is only defined insofar as it stands in the element relation ‘€’ to A. In other

60 CHAPTER 3. COMPOSITIONS

words, each K € B would be reduced to a mere element, and thus we would be eradicating
the ‘essence’ of K once we say that K € A, precisely because K is thereby reduced to
nothing more than the fact that it stands in the element relation to A.

On the other hand, defining A as the colimit A = colim(D) preserves the depth of K in
A, while nonetheless preserving the distinction between each K, since A is a disjoint union.
Thus, instead of the informationally poor element relation K € A, which totally conceals
the nature of K, we get the informationally rich inclusion relation K < A, which includes
all of the nature of K. This is an absolutely crucial aspect for defining composition
hierarchies, which is why we encapsulate it in the following

Dictum 3.8. The canonical injective relation K — A that holds between a basis com-
position K and a composition accumulator A is what enables any level of a composition
hierarchy to encode all information about compositions lower in the hierarchy.

This proposition means that ascent to higher levels of composition is not merely ab-
stract, but that each ascensional step preserves all of the lower level steps in a concrete
and transparent way.

3.3.2.2 Realizing Compound Compositions

SUMMARY. The technical machinery for realizing compound compositions is provided. We
also provide an example of the significance of the equivalence relation discussed in Section
3.2.2.

7§7

A composition accumulator A corresponds to a colimit structure. If each basis com-
position K — A is determinate, then A will be used as the domain of the content of a
compound composition. The idea is that the compositions in A serve as the material, and a
structure morphism ¢ : A — F forms (i.e., structures) the material in some way. However,
if any basis compositions K < A are determinable, then there are more steps to take care
of.

We will now consider the four main cases of compound composition construction. They
are divided into two kinds of cases:

1. A is either determinate or determinable.

2. The compound composition S of which A is the material is either determinate or
determinable.

More specifically, we have the following cases to consider:

10Nonetheless, there are good examples of when it is fruitful to consider A as a multiset in the ‘naive’
sense, since it simplifies things. This is an approach we will take in Chapter 4.

3.3. STEPS TO CONSTRUCTING COMPOSITION HIERARCHIES 61

1. Each basis composition K — A is determinate, and the compound composition S of
which A = dom(S) is determinate.

2. Each basis composition K < A is determinate, whereas the compound composition
S of which A = dom(S) is determinable.

3. There are basis compositions K <> A that are determinable, and the compound
composition S of which some determination A" = dom(S) of A is determinate.

4. There are basis compositions K < A that are determinable, and the compound
composition S is determinable, meaning either of the following:

(a) There are multiple determinations Ay, ..., A, of A in dom(S), while cod(S) is
a singleton, meaning that the domain is fixed over all determinations of S.

(b) There is only a single determination A" of A in dom(S), while there are multiple
codomains in cod(S5).

(c) A combination of the latter two, where there are multiple determinations Ay, ..., A,
of A in dom(S), as well as multiple codomains F1, ..., Fy, in cod(S).

We now proceed in tackling each of these situations.

Case 1. Let D : J — B be a diagram and therefore A = colim(D) a composition accu-
mulator. If each K € D(J) corresponds to a determinate composition, then A corresponds
to a determinate composition. Therefore we define the compound composition

Comp : Determinate (A Y, F). (3.28)

Note that we could have defined Comp in an equivalent way, which is conceptually
distinct. We could have fixed the structure F', and for each j € J, defined a structure
morphism
This would specify the structure of each D(j) component of A individually. We could then
‘glue’ together all p; morphisms, thus getting the structure morphism

Glue({p;},.,): [[PG) = F, (3.29)
JjeJ
where Glue({ pj} - ;) combines all p; into a single morphism acting on the disjoint union

of the domains of all p; for j € J.

Case 2. This is like Case 1, except we have a family of maps {?/Ji A — E}Z ¢ instead of
a single map 9 : A — F. Thus we get the following determinable compound composition

Comp : Determinable({¢; : A — Fi}z‘el) (3.30)

62 CHAPTER 3. COMPOSITIONS

Case 3. In this situation, for a diagram D : J — 95, there are some j € J such that
D(j) = K is determinable. Nonetheless, the compound composition we wish to construct
with A = colim(D) is determinate, so we require a determination of each determinable
composition K < A, thus deriving some new A’ which will be used as the domain of the
compound composition.

Recall from Section 3.2.2.2 that if K € D(J) is determinable, then we have a determi-
nation of K encoded as the limit structure

Str(Kper,) — Limit(dom(K); Yy cod(K)).

For simplicity, we can denote Str(Kpet,) simply by Kpet,. Therefore for each K € D(J)
such that K is determinable, select a determination Kp., — K. After replacing each
determinable composition K € D(J) with one of its determinations, we get Str(Dets) as
the category of the resulting determinate compositions (which includes those compositions
L € D(J) that were already determinate). Thus we can derive the new diagram Dpss : J —
Str(Dets), where if D(j) = K is determinable then Dpess(j) equals some determination
Kpet;- Then we take our new composition accumulator to be A" = colim(Dpess), and
derive therefore the compound composition

Comp : Determinate (A’ v F). (3.31)

Equivalently, like in Case 1, we can define p; : Dpes(j) — F for each j € J, and then
glue all p; together, deriving

Glue({pj}jeJ) : HDDets(j) — F. (3.32)
jeJ

Case 4. This is like Case 3, except the compound composition is determinable. We can
achieve the construction of a determinable compound composition whose support contains
determinable compositions in one of the following ways:

1. We can fix a diagram Dpets : J — Str(Dets), getting the composition accumulator
A = colim(Dpets). Then we define the compound composition

Comp : Determinable({A o, Fi}iel)' (3.33)

In this situation, the domain is fixed over all determinations, while the codomain
varies.

2. We can do the opposite, i.e., specify a family of diagrams {DDetsi :J = Str(Detsi)}
as the domains and specify a fixed codomain F', as so

el

Comp : Determinable({colim(Dpets,) LN F}ig). (3.34)

3.3. STEPS TO CONSTRUCTING COMPOSITION HIERARCHIES 63

3. We can do both, i.e., specify a family of diagrams and codomains, thus deriving

Comp : Determinable ({colim(Dpess;) 2 Fi} (3.35)

ier):
Figure 3.2 provides an intuitive representation for how compound compositions are
constructed.

Before moving on to the next section, now is an important time to discuss a topic that was
touched upon in Section 3.2.2. There, we required that for a determinable composition K,
we encode it as a structure not simply by taking the coproduct of its determinations, but
by taking a general colimit potentially containing morphisms between determinations. We
saw that this generated an equivalence relation ~. We will now see how this equivalence
relation is important.

Let K be a determinable composition (as a structure) and let Kpe, and Kpey, be
determinations of K. Let D be a diagram of which K is the colimit, i.e., K = colim(D).
Suppose that in D there is an epimonism f : Kper, — Kpet,. This means that Kpet, and
Kpet, are basically equivalent, since f is epimonic and for each x € Kpe,, we have that

Now suppose we have two diagrams Dy : J — Str(Dets;) and Dy : J — Str(Detss)
where they are both equal except that D; sends some j to Kpet, whereas Dy sends j to
Kpet,. Then it is also clear that A; = colim(D;1) should be equivalent to Az = colim(Ds).

Therefore, if Ay and Ay are equivalent, then for structure morphisms ¢ : A3 — F and
w2 1 Ay — F, if for every © € Aj, y € Ag such that x ~ y we also have that ¢1(z) = ¢a(y),
then (1 and 9 should also be equivalent. We can see this equivalence by the commutativity
of the following diagram

Ay —>~A2

A -

where f*: A; — Ajs is the epimonism induced by f : Kpet, = Kpet,:
Now let ,
Comp : Determinable({Ai REN F}iel)

be a determinable composition. Then we have the equivalence relation ~ on Content(Comp)
whereby ¢; ~ ¢; if, for an epimonic morphism f*: A; — A;, the diagram

A—>A

A

m colim ? s I
W e N
N K K’
g
=
w (a) A determinate compound composition. We take the colimit colim of K, ..., K'. Then we complete

the construction of the composition by mapping colim into F' via .
™
=
=
=
=
@)

. . Pi
colim < > colimpet, F;
g ™ / g A /

K K Kpet, Det,

(b) A determinable compound composition. For the general colimit colim(K, ..., K’), we get a de-

termination as a colimit colimpe;, of the determinations Kpe,, .. ;w&um:. Then we complete the

construction of the composition by mapping colimpet, into F;, via ¢;.

Figure 3.2: A diagrammatic representation of how we construct compound compositions: (a) demonstrates how we
get the content of a determinate compound composition, whereas (b) demonstrates how we get the content of a
determinable compound composition.

64

3.3. STEPS TO CONSTRUCTING COMPOSITION HIERARCHIES 65

commutes. This gives us an important

Principle 3.1. If for every v;, ¢; € Content(Comp) we have that ¢; ~ ¢; — and therefore
that the cardinality of Content(Comp)/ ~ is equal to 1 — then Comp is Determinate with
respect to ~.

It is clear why C'omp should be considered determinate, since a determinate composition
can be thought of as a determinable composition whose content contains one structure
morphism. Thus, if we have a determinable composition K with Content(K) = ®, then
for the resulting ®/ ~, if card(®/ ~) = 1 then all the determinations of K are equivalent.
Therefore it makes sense to say that K is determinate with respect to ~.

Let us see an example to make this idea clear.

Example 3.4. Words.

Consider the discussion of letters in Example 3.1 above. At the next level of compo-
sition, we can construct words as compound compositions over an alphabet B of letters,
where a composition accumulator A collects letters. The codomain of such a compound
composition can be a total order 7', since a word is specified by the ordering of its letters.
So for each letter [— A, we would map it onto a single element t € T.11

Since letters are determinable, where each determination is a realization of the letter’s
topology in three-dimensional space, a word is likewise determinable. Thus we can define
a word as a compound composition

aWord : Determinable({A; 2Ll T}z‘el)>

where each ¢; corresponds to a specific spatial realization of the letters in A.

However, since a word is specified only with regard to how its letters are ordered,
then aWord should in a sense be determinate, since each determination realizes the same
ordering of the letters of A. This is what the equivalence relation ~ on Content(aWord)
determines. Since for each letter [— A, there are epimonic morphisms f : Ipet; = Ipet;
between all determinations of [, this means also that any determinations ¢, : A, — T,
g + Ay = T are equivalent with respect to ~. Therefore aWord is Determinate with
respect to ~.

3.3.3 Composition Constructors

SUMMARY. We provide a formal definition of a composition constructor. First, however, we
formalize Cases 1 through 4 from the previous Section 3.3.2.2. In each of these cases, the
material A of each compound composition was fixed, even though the determinations of A
were able to vary. We should also consider the case where the lower level compositions of the
compound composition can vary. This is because we may have some compositions that can

"Note that this map is epic, since everything in ! maps down to the single point t.

66 CHAPTER 3. COMPOSITIONS

gain and lose material, while still remaining ‘themselves’ in some sense. For example, an
oxygen atom can gain and lose neutrons, while still remaining an oxygen atom. Therefore
we will also define compound compositions whose lower level compositions vary.
5

Recall that 9B is a basis of compositions translated into structures, and for a diagram
D:J — B, we call A= colim(D) a composition accumulator over ‘B. For sake of distin-
guishing between levels of composition, call A the material of the compound composition
(of which A is the domain structure). Also, for the diagram D : J — B, let J;p¢ denote
the subset of J consisting of all j such that D(j) is a determined composition, and let Jpy
denote the subset of J consisting of all j such that D(j) is a determinable composition.
Since the content of a composition is the most important part of its definition, we will
first define a content constructor. First, we will define a content constructor whose domain
(material) A remains fixed. This will then allow us to define a content constructor whose
domain (material) is variable.

First, we define a content constructor with fixed material A.

Definition 3.2 (A-Content Constructor). Let D : J — B be a diagram and A = colim(D).
An A-content constructor C (over B) is a pair C' = (D, ®) where:

1. D is one of the symbols Determinate or Determinable.
2. ® depends on A and D as follows:

(a) If A is Determinate (meaning that every D(j) < A is Determinate), then:
i. If D = Determinate, then ® : A — F' is a structure morphism.
ii. If D = Determinable, then ¢ = {gbi A= E}iel is a family of structure
morphisms.
(b) If Ais Determinable (meaning that there are D(j) < A that are Determinable),
then:
i. If D = Determinate, then ® is a pair ® = (6,1), such that:
A. For each j € Jpp, let I; be the index set of the morphisms {gpi}idj
that constitute the content of D(j). Then for a j € Jipy, and an i € I,
we have a structure

Str(NN;,, Content(D(5));)-

So we need to choose an i € I; for each j, and this will determine the
selection of determinations from each determinable composition in A.
Hence § will be a map

5:dow =[] ({Gtt(Nji,Content(D(j))i):ielj}>

Jj€J Db

3.3. STEPS TO CONSTRUCTING COMPOSITION HIERARCHIES 67

that sends each j € J/Db to a determination of D(j) taken as a struc-
ture. Thus J is a diagram, as is the restriction DJips of D to Jpt-
We thus have their disjoint union A = D Jipe 11 0. This then gives a
determination of A as a colimit structure

Apet — Colimit(A).

B. ¢ : Apet — F' is a structure morphism.
ii. D = Determinable, then ¢ is a pair ® = (U, v), where:
A. For each j € Jpp, let I; be the index set of the morphisms {gp,}
that constitute the content of D(j). Then U is a subset

’LEIj

UC H ({Gtt(Nji,Content(D(j))i) S Ij})

J€J Db

of the set of all tuples u whose components u; consist of a determina-
tion of D(j) taken as a structure. Therefore a tuple v € U specifies a
determination of A = colim(D), since each determinable composition
D(j) = K — Ais given a determination by the u; component of w.
Specifically, we get a diagram §,, like the § above, for each v € U; i.e.,
a diagram

ou : Jpb — H <{6tt(Nji,Content(D(j))i) (i€ Ij}>

Jj€Jpb
that thus determines a structure

-ADetu ? COlimit(DJ‘Dt II 5u)

B. 9 : U — Str; is a mapping sending each u € U to a structure morphism
1 : Apet, — F.

Thus ® determines the structure morphism(s) of the content of a compound compo-
sition.

An A-concept constructor is also called a fized material content constructor, since each
determination uses some determination of A for its domain. The reader can confirm that
points 2.(a).i, 2.(a).ii, 2.(b).i, and 2.(b).ii correspond, respectively, to Cases 1, 2, 3, and 4
from Section 3.3.2.2.

In contrast to a fixed material content constructor, a variable material content construc-
tor is a content constructor where the material A varies. Thus we provide the following
definition.

68 CHAPTER 3. COMPOSITIONS

Definition 3.3 (Variable Material Content Constructor). A variable material content con-
structor C' (over B) is a pair (D, «), where:

1. D= {Di cJi — %}iel is a collection of diagrams, such that for any distinct ¢,k € I,
we require J; # J.

2. a: DD — € is a map assigning to each diagram D € D, a colim(D)-content constructor
C, where € is the collection of all fixed material content constructors over ‘B.

To get the content of a variable material content constructor, just take the union of
all contents from the fixed material content constructors in «(D). For instance, for an
A-content constructor C, let ¢(C) denote its content (that is, its set of determinations).
If the K-component of C' is determinate, then there is only one determination d, so we
can wrap it with a singleton {d} Thus we get the content of a variable material content
constructor V = (D, a) as

Con(V) = J ¢(a(D)). (3.38)
Deb
Now we can define a composition constructor over a basis B as follows:

Definition 3.4 (Composition Constructor). A composition constructor K over a basis B
is a triple K = (N, V,C), where:

1. N is a finite string of symbols from 91, used to construct the name of K.
2. V is either the symbol Fixed or Variable. V is called the variability type of K.
3. C depends on V as follows:

(a) If V = Fixed, then C is a fized material content constructor.
(b) If V = Variable, then C is a variable material content constructor.

C' is called the content constructor of K.

This data thus provides what is necessary to create a compound composition over 5.
To complete the construction, we see whether the content constructor C' generates one
structure morphism or more than one; if the former, then K is Determinate; if the latter,
then K is Determinable. Let Con(C) be the resulting structure morphism or collection
of structure morphisms generated by C. Then we get K as a composition by

N : D(Con(C)),

where D is either Determinate or Determinable depending on the value of Con(C).
Note that if V = Variable, then K is automatically Determinable.

In format, a compound composition is like an elementary composition. The difference
is that, for a compound composition, the domain of the content consists of material that is
to be formed in some way, whereas there is not yet a notion of material in an elementary
composition. Nonetheless, in both situations, the content consists of a structure morphism
or a family of structure morphisms.

3.3. STEPS TO CONSTRUCTING COMPOSITION HIERARCHIES 69

3.3.4 Super Domain of Compositions

SUMMARY. We briefly define the concept of a super domain of compositions.
g

A super domain of compositions is just a collection of compositions over some basis.
To be concise, we abbreviate ‘super domain of compositions’ to ‘super domain’. We thus
define a super domain formally as follows:

Definition 3.5 (Super Domain). A super domain (over B) is a set ¥ of compound com-
positions over ‘B.

When discussing a super domain >, when we refer to the basis, it is convenient to
think of this reference as being either to the set of compositions, or the set of compositions
encoded as structures. Likewise, when we refer to the super domain of compositions, we
may think of this reference as being either to the set of composition constructors, the set
of compositions, or the set of compositions encoded as structures.

3.3.5 Composition Hierarchies

SUMMARY. This section is the apotheosis of the rest of the groundwork provided in this
chapter. It provides us with the simple scheme for defining hierarchical universes of objects.

5
For a super domain 3., we get its basis B via
Basis(X) = *B. (3.39)

Definition 3.6 (Composition Hierarchy). A composition hierarchy H is a sequence H =
(B,31,...,%,), where:

1. B is an absolute basis of compositions.

2. Each ¥; is such that Basis(¥;) = ¥;_1. This means that the set of compositions
constructed from a lower level ¢ — 1 of compositions is used as the basis for the higher
level ¢ of compositions.

A simplified representation of a composition hierarchy is depicted in Figure 3.3.

CHAPTER 3. COMPOSITIONS

70

Mum - lim —
. colim MHW\\ r //// F
Wo?.jw\/\\ L - F \8?.3/\\\ i > F
B — K K’ L 7,

Figure 3.3: A simplified representation of a composition hierarchy. At the bottom of the figure, we have an absolute
basis B of compositions K,...,K',...,L,...,L’. We then come up with combinations of these compositions, and
form them via ¢ and 1. We then translate the results into limit structures, which forms the super domain ;. And
SO onm.

Chapter 4

Aggregates

4.1 Aggregates

SUMMARY. We provide orientation for the topic of this chapter. We then formally define
the concept of an aggregate.

7§7

4.1.1 Orientation

SUMMARY. Orientation for the main topic of this chapter is provided.
5

In Chapter 3, we defined a compound composition K as a collection of lower level
compositions that are given form. This was achieved, roughly, by defining a composition
accumulator A, and then mapping A into some other structure F.! We can think of A as
constituting the material of K, whereas (the mapping into) F' constitutes its form.

In this chapter, we will be providing methods for analyzing compositions solely in
terms of their material. Such an analysis is useful since it allows for a comparison of
compositions based solely on their material constitution, independent of the forms that
might differentiate them. For instance, two words related by an anagram are different in
form, but in terms of their material (viz. their letters) they are the same. Thus we can
compare compositions solely in terms of their parts, and not how those parts are formed
into a whole. Such comparisons are made rigorous by the formalisms of this chapter.

What were called composition accumulators in Chapter 3 correspond to what we will
call aggregates in this chapter. Essentially, these are the same kind of object: they both
correspond to multisets of lower level compositions. The only difference is formal: whereas

!See Section 3.3.2 for a more thorough description.

71

72 CHAPTER 4. AGGREGATES

composition accumulators were defined as diagrams,?

different way.

we will define aggregates in a totally

4.1.2 Definition

SUMMARY. We outline the scheme that we will use to denote aggregates.
5

Like the composition accumulators that were presented in Chapter 3, aggregates corre-
spond to multisets of compositions from some basis B. A common formalism for specifying
multisets over a universal set X is to define a map m : X — N, where m(z) =n > 0if x is
in the multiset and m(x) = 0 if it is not. However, our formalism will make use of a different
convention that allows for a more thorough investigation of the relations between multisets.
We use the category PX consisting of subsets of X and inclusions as morphisms. We also
equip PX with the set NT of positive natural numbers, and add morphisms m : U — N*
for every set map from U C X to N*. We can then define the following:

Definition 4.1 (Aggregate). Let B be a basis of compositions. An aggregate A is a pair
A = (sup, mul), where:

1. sup : 1 — PB is a functor from the terminal category. Thus sup picks out a subset
of B; it is called the support of A, and denoted by sup(A).

2. mul : sup(A) — NT is a function that assigns a positive natural number to each
element of the support of A; it is called the multiplicity of A, and denoted by mul(A).

For simplicity, when we refer to the support sup(A) of A, we can assume that we are
referring to the set sup(A)(1) € PB.

The reason that we choose this formalism rather than the usual multiset formalism is
that this one preserves the distinction between the support of a multiset and the multiplici-
ties. Thus, rather than checking where a function m(B) is 0 in order to derive the support,
we derive it immediately via the functor sup. Thus for a collection ¥ of aggregates, we can
investigate them solely in terms of either sup(X), or mul(X), or ¥ as whole.

Before moving on, we make a comment on terminology. In Section 3.3.4, we defined a
super domain of compositions as a collection of compositions over a basis. In this chapter,
we call a collection of aggregates over a basis a super domain of aggregates. For the rest
of this chapter, when we speak of super domains, assume that we are talking about super
domains of aggregates.

?Le., functors D : J — B.

4.2. CATEGORICAL STRUCTURE OF A SUPER DOMAIN OF AGGREGATES 73

4.2 Categorical Structure of a Super Domain of Aggregates

SUMMARY. The categorical structure of a super domain of aggregates is defined. We also
present the notion of a fiber of a functor. We then define three functors and discuss their
fibers.

7§7

4.2.1 The Category 6(X) of a Super Domain ¥

SUMMARY. We present the categorical structure of a super domain.
5

Given a super domain ¥, we construct a category where the objects are the aggregates
A € ¥ and where there is a single morphism « : A — A’ if A is a submultiset of A’.
Specifically, €(X) is the category where:

1. The objects are aggregates A = (sup, mul).
2. The morphisms are pairs o = (o,) : A — A’, where:

(a) o :sup(A) < sup(A’) is an inclusion of sets.

(b) For an aggregate A, consider the function mul(A) as the set of pairs (z,n)
where 2 € sup(A) and mul(A)(z) = n.> Then g : mul(4) — mul(A’) sends
the pair (z,n) to (z,m) iff n < m. If there exists a pair (y,k) € mul(A) and
(y,1) € mul(A’) such that [< k, then such a function u does not exist, and thus
there is no morphism o : A — A" in 6(%).

The category €(X) of an arbitrary super domain ¥ will be used frequently throughout
this chapter. In particular, we will investigate many properties of ¥ by evaluating functors
from €(X) into other categories. These functors are defined in the following section.

4.2.2 A Few Functors and Their Fibers

SUMMARY. We define the notion of a fiber in category theory, and then present a few
functors that will be used throughout this chapter.

7§7

3Note that this is just the way to define a function as a subset of a Cartesian product; in particular,
mul C sup(A) x NT.

74 CHAPTER 4. AGGREGATES

The categories and functors presented in this section will be used throughout this
chapter in order to gauge the information about a super domain. Before discussing these
categories and functors, we provide a definition of a fiber of a functor, analogously to the
definition of a fiber of a function.*

Definition 4.2 (Fiber of a Functor). Let F': C'— D be a functor. We define the fiber of
an object d in D and a morphism g in D as follows:

e For d € Dy, its fiber F~1(d) is the set

FY(d) ={ceCy: F(c) = d}.
e For g € Dy, its fiber F~1(g) is the set

F ' g)={feCi:F(f) =g}

In a moment we will present some functors and their fibers. But first, we present the
category FinOrd of finite ordinals. This category has natural numbers for objects, and a
single morphism +k : n — m whenever n < m and n+ k = m.

(I) The Rank Functor. For an arbitrary set X, we define the functor
R :PX — FinOrd : U — card(U). (4.1)

This functor provides a categorical version of the ‘rank function’ defined on a graded
partially ordered set. A graded partial order P is a partial order equipped with a rank
function p : P — N satisfying the following properties:

1. If x <y then p(x) < p(y).
2. If y covers x then p(y) = p(x) + 1.

The covering relation < between x and y means that © < y and there is no z for which
r=<z=<y.

The idea of a graded partial order P is that there are multiple ‘tiers’ of elements of P,
and each of these tiers can be identified with a positive integer. A power set PX ordered
by inclusion is a graded partial order, and its rank function sends each U C X to its
cardinality. The functor R is precisely such a rank function; the only difference is that it
also maps inclusions ¢ : U — V in PX to the function +n : card(U) — card(V'), where
n = card(V') — card(U).

The fiber of each ordinal k € R(PXj) is therefore the subset

X, ={U € PX : card(U) = k}.

This of course endows PX with an equivalence relation ~ where U ~ V iff card(U) =
card(V).

4For a function f: X — Y, the fiber of f over an element y € Y is the set f_l(y) ={z e X: f(zx) =y}

4.2. CATEGORICAL STRUCTURE OF A SUPER DOMAIN OF AGGREGATES 75

PX FinOrd

] .

{a,b} {a,c} {b,c} 2

{a} {b} {c} 1

+1

& 0

Figure 4.1: Visualization of the functor from a power set PX to FinOrd.

Remark 4.1. If X is infinite, then there can be no rank function defined from PX to N.
This is because there is no n € N that can provide the cardinality of X itself. However,
we can define a partial function 7 : PX — N that operates on U € PX iff U is finite. We
can then say that PX is partially graded, and is therefore a partially graded partial order.
However, for the remainder of the chapter, assume that when we refer to an arbitrary super
domain 3 over an arbitrary basis B, that B is finite.

Example 4.1. Let X = {a,b,c}. Then the functor R : PX — FinOrd can be visualized
as in Figure 4.1. According to the figure, we have the following fibers (equivalence classes):

o R71(0) = {2}

o R71(1) = {{a}, {0}, {c}}

o R71(2) = {{a, b}, {a,c}, {b,c}}
o R7I(3) ={X}

(IT) The Support Functor. This ‘forgetful-like’ functor
§:6(2X) —~PB (4.2)

76 CHAPTER 4. AGGREGATES

maps aggregates A in 6(X) to their support sets. S maps morphisms a: A — A’ in €(X)
to the inclusion S(a) : sup(A) — sup(A’) of their supports.

The fiber of a set S € PB is the set of aggregates A € €(X) that have the same
support.

From S, we derive the next functor.

(III) The Rank-Support Functor. This functor is defined as
Ri=RoS:6(X)— FinOrd. (4.3)

It assigns to each aggregate A € 3 the rank of its support, as demonstrated by the following
commutative diagram:

PB R FinOrd
7
s " R.=RoS
B|(X%)

The fiber of an element n in FinOrd is the set of aggregates whose supports have the same
cardinality:.

Note 4.1. The functors S and R, determine partitions on ¥, as determined by the fibers of
their codomains discussed above. These partitions will feature frequently throughout this
chapter. We denote the partition defined by S as ¥/S and that defined by R, as ¥/R..
Note that X/S is a refinement of ¥/R,.

4.3 Analysis of Super Domains

SUMMARY. A thorough analysis of super domains is performed. We first analyze a super
domain in terms of the supports of its aggregates, and then the multiplicities of its supports.
This section is meant to provide the reader with an analytical toolkit for investigating
aggregates.

§

4.3.1 Analysis via sup

SUMMARY. We present analytical tools for investigating aggregates in terms of their sup-
ports.

7§7

4.3. ANALYSIS OF SUPER DOMAINS 7

Given a super domain €(X), our current task is to evaluate its structure® and properties
with respect to the support sets of its aggregates. Much of this evaluation can be achieved
with the functors S and R, discussed in Section 4.2.2. Specifically, we will be investigating
B(X) for the following reasons:

1. To gauge aggregates for the distribution of the ranks of their supports. This is the
question of how many aggregates from Y have support of rank n, for n a natural
number.

2. To investigate the prevalence of a basis composition in X, which is to say how fre-
quently a basis composition occurs in 3. This question will be broken up into two
sub-questions:

(a) How prevalent a basis composition is at a particular rank.

(b) How prevalent a basis composition is regardless of rank.
The motivation for such a distinction will be provided later.

3. To derive a fleshed out identification of the use of supports from different ranks.
This reason contrasts with reason (1) above since this current question deals with
the specific supports of each rank and how frequently they are used, rather than the
purely abstract investigation of the ranks themselves. This question will be broken
up into three sub-questions:

(a) How many of the supports from a given rank occur in 3.

(b) How many times a particular support occurs in X.

(¢) The distribution of the use of all the supports from a given rank; that is, how
many times does each support sy, ..., s; from rank n occur in .

4.3.1.1 Rank Distribution

SUMMARY. We define the rank distribution of a super domain. The rank distribution
specifies how many aggregates with supports of cardinality k occur in the super domain.

7§7

Given a super domain Y, we want to know how many A € X have supports of cardinality
n for n between 0 and the cardinality of the basis B. The cardinality of the support of
an aggregate A is given by the functor R.(S) (see Equation 4.3). Hence for the functor
R, : 6(X) — FinOrd, the fiber of an ordinal n in FinOrd is the subset T' C ¥ consisting
of all A € ¥ such that card(sup(A)) = n. We take the cardinality of 7" to derive the

®We mean structure in the general sense of the word.

78 CHAPTER 4. AGGREGATES

quantity of aggregates in ¥ that are composed from the same quantity of unique basis
compositions.

For instance, if we have for a super domain of compositions a collection of words W
over some alphabet 2 as basis, we may wish to class together all words U C W such
that each u € Uy has k letters, and is therefore composed from a subalphabet Qlf C A of
cardinality k. We can say that Uy, is the subset of W constituted by the set K of k-element
subalphabets of 2. This set Uy would correspond to a collection Ay of aggregates over
the basis 2, given by the fiber of R, over k£ in FinOrd. The cardinality of the fiber tells
us how many words in W have precisely k unique letters (thus it ignores duplications of
letters). We then let k vary within the range 0 to card(2l), taking the cardinality of the
fiber of each such k in order to derive the quantity of words in W that are constituted by k
unique letters. The cardinalities of the fibers from 0 to card(2l) constitutes what is called
the rank distribution of the super domain W.

More generally, for a super domain ¥ over basis B with card(B) = n, the rank distribu-
tion of ¥ is derived by taking the cardinality of the fiber of k in FinOrd for k € {0,...,n}
under the functor R, : 6(X) — FinOrd. Supposing ¥ and B are finite, this gives rise to
an (n + 1)-tuple

A= (card(R;l(O)), e card(RIl(n))) (4.4)

whose value at A; (for ¢ in the range {1,...,n + 1}) is the cardinality of the fiber of ¢ — 1
under R,.% Thus, reading A\ from left to right gives the quantity of aggregates A € ¥
whose supports have cardinality 0, 1,...,n. (Note that there is at most 1 aggregate whose
support has a cardinality of 0, namely the empty aggregate.)

Due to the existence of such rank distribution tuples A, if we are given a collection S of
(finite) super domains over a (finite) basis B with card(B) = n, then we have the function

A:S— N (4.5)

sending each ¥ € S to its rank distribution tuple.
The existence of such a function can be useful for a number of applications, some of
which are the following;:

Application 4.1. The fiber of N**! under A can be used to define an equivalence relation
on S, where ¥ ~ ¥’ whenever they have the same rank distribution.

Application 4.2. Considering the monoidal structure on N"*! given by the binary operation
+ : N*tLx N+l 5 N*+1 one can compare super domains ¥ and ¥’ by operating on their
rank distributions. To be more general, one can extend N"*1 to the group Z"*!, in order
to allow for comparisons such as taking the difference between the rank distributions of
¥ and ¥/. For example, we can take the difference of the rank distribution of ¥ and ¥’
via A(Y') — A(X). We can generalize further and define Z"*1 as a Z-module. This allows

5The value at)\; is the cardinality of the fiber of i — 1 rather than ¢ since we index tuples starting from
1, while the initial object in FinOrd is 0.

4.3. ANALYSIS OF SUPER DOMAINS 79

us to compare super domains based on the multiplicative relationships between their rank
distributions; e.g. for scalar multiplication defined in the usual way, i.e.,

XISz (o)== v1, ., Upg)s

we may have that A(X) = j-A(X). Thus the rank distribution of ¥’ is a multiple of the rank
distribution of . In this setting, a super domain is converted into a linear combination of
basis vectors vy, ..., v,11, Where each basis vector denotes a rank.

Application 4.3. We can expand S by expanding each ¥ € S to its power set P, and then
unioning all such PX, giving the set

sP = [J{P(®): T es}.
>esS

In other words, we expand S so that it contains every subsuper domain II C X for every
3} € S. Using the equivalence relation from the first bullet point, we will be able to compare
super domains ¥ and Y’ in more detail. For instance, suppose ¥ = ¥/, but it is the case
that A(X); < A(X'); for every index i of their vectors. Then this implies that there exists
a subset II C ¥/ such that ¥ ~ II. Under the equivalence relation ~ discussed above, we
can define this new (looser) relation ~4 as a degenerative equivalence between ¥ and Y.
Thus we can say the 3 ~g 3 iff for all ¢ in the range 0 to n + 1, we have A(X); < A(X');.
Stated more succinctly:

5~ X Vi€ [0,n + 1] (A(E); < A(E);).

We need not require that S consist only of super domains sharing the same basis. In a
more general setting, given a collection S’ of (finite) super domains over (finite) bases, we
can take the maximum

max({card(Basis(X)): L € S'}) =m (4.6)
in order to derive N™*! (where Basis(X) gives the basis of). Thus we have
A:S — N7
where for any ¥ such that card(Basis(X)) =n < m+ 1, the last (m + 1) — n components
of A(X) are all 0.
4.3.1.2 Prevalence of Individual Basis Compositions

SUMMARY. We provide methods for deriving how prevalent a basis composition is in the
aggregates of a super domain.

7§7

80 CHAPTER 4. AGGREGATES

We now turn to the question of how many aggregates in a super domain contain at
least one instance of a particular basis composition b. Let II be a super domain over B.
Then for a basis composition b € B, our current question is how many A € II have b in
their support. We can also generalize this situation to arbitrary subsets P C II.

(I) Absolute Prevalence of a Basis Composition. Our first task is to check whether or not
a higher order composition A € II contains the basis composition b € B. We can establish
this ‘checking mechanism’ functorially as follows. Let b: 1 — PB be the functor from the
terminal category to the singleton set {b}. This functor picks out the basis composition b
from B (wrapped in a singleton). Next, define the functor 7 : 1 — €(II) in order to pick
out an aggregate. For convenience, we can refer to b(1) and m(1) as b and 7, respectively.
Using the functor & defined in Equation 4.2, we get the functor So7m : 1 — PB that
maps 7 to its support. We then check whether the hom-set Hompp (b, S (7r)) is empty or
not. If it’s empty, then m does not contain b; if it’s not empty, then m does contain b.
Moreover if it’s not empty, then the cardinality of the hom-set is 1, since there is at most
one morphism i : U — V for U,V € PB. Our ‘checking mechanism’ therefore consists of
evaluating whether the cardinality of the hom-set Hompg (b, S (7r)) is 0 or 1. Thus, to get
the quantity of aggregates in II that contain at least one b, we simply let m vary over all
of I, and sum the cardinalities of hom-sets with domain {b}. This provides the prevalence
function with inputs b € B and a super domain II over B, defined as follows:

P(b,10) = Y _ card(Hompg (b, S())). (4.7)

mell

(IT) Relative Prevalence of a Basis Composition. We obviously do not have to let 7 vary
over all of G(II). Instead, we can let m vary over a subset P C II. Thus we can evaluate the
prevalence of B with respect to P. For instance, we may wish to evaluate the prevalence
of b with respect to all the aggregates P; C II of rank 3.

The prevalence functions discussed in this section provide information regarding how
many aggregates in the super domain contain the basis composition b. What the functions
do not provide, however, is the total quantity of instances of b in the super domain in
general, since this would require information about the multiplicities of the aggregates.
We deal with this problem in Section 4.3.2.2.

4.3.1.3 Prevalence of Supports In a Super Domain

SUMMARY. We provide methods for deriving how frequently a specific support occurs in
the aggregates of a super domain.

7§7

4.3. ANALYSIS OF SUPER DOMAINS 81

We now move on to a more thorough investigation of the distribution of the supports
of a super domain .

(I) How Many k-Element Supports Occur In %.. For a super domain ¥ over B, we want to
know how many of the k-element subsets of B are used. For card(B) = n, the quantity of

k-element subsets of B is given by
n\ n!
k) kl(n—k)

We get the set of aggregates in % that have supports with cardinality k& by taking the
fiber R;1(k) = ¥;. We then take the value of the functor S(¥) in order to derive a
subset of k-element subsets in PB, which is given by R~!(k). We thus take the cardinality
card(S(Xg)) in order to derive the quantity of k-element supports that occur in X.

(IT1) How Many Times a Particular Support Occurs In Y. The next problem is to determine
how many times a particular set B C B is used as the support for a aggregate A € 3. We
can define this as the cardinality of the fiber of B under §. However, we can also solve this
problem with similar methods discussed in Section 4.3.1.2. Though this approach is more
abstract, it suggests some interesting possibilities, discussed in the following.

First, we pick out a set B by defining it as a functor B : 1 — PB, and let 7 :
1 — 6(X) vary over the aggregates in ¥. We want to search for all 7 € ¥ such that
Hompg (B, S(w)) = {Idg}. The satisfaction of this condition means that B is the sup-
port of m. Thus, to check whether this condition is satisfied, we take the intersection
Hompp (B ,S (7r)) N{Idp}. Letting PB; denote the set of morphisms in PB, our ‘checking
mechanism’ is derived as the the following pullback (in Set):

Hompg (B, S(m)) xpp, {Idp} ——— {Idp}

-

Hompg (B,S(’/T)) c PB,

Thus, in order to derive the total quantity of aggregates m € 3 that have support B, we
sum the cardinalities of the pullbacks. Setting II = ¥ (to avoid notational confusion), we
get the following function:

®(B,MI) = > _ card(Hompp (B, S(r)) xpp, {Ids}). (4.8)
mell

Formalizing the ‘checking mechanism’ as a pullback is suggestive. For instance, suppose
we want to extend the set {Idg} by allowing it to contain another morphism i, where

82 CHAPTER 4. AGGREGATES

Hompp (B , Z(B)) is non-empty. We might want to do such a thing under a circumstance
where the extra compositions in ¢(B) are in some sense ‘extraneous’, so an aggregate with
support i(B) really just consists of compositions from B. We can define such an extension
with a set I of morphisms with domain B as

Ext(B,I) = {Idg} U|_ Hompg (B, i(B)). (4.9)
el

We then get the function

®(B,1,T) =Y card(HompB (B,S(n)) xpp, Ext(B, I)). (4.10)
mell

Application 4.4. Suppose we have a basis B consisting of musical pitches along with an
r € B that denotes silence. Let P C B denote a collection of pitches. We compose a
collection M of melodies each of which uses all of the pitches from P. Thus M corresponds
to a subset of aggregates Ap C Y. However, considering that some of these melodies may
have rest durations, and thus contain the basis composition r, then this means that there
may be a € Ap such that S(a) # P, since it could be the case that S(a) = P U {r}. If
this is the case, then ®(P,3) will not account for some a € Ap, under the condition that
r € S(a). Thus we would want to extend P by adding the morphism " : P < P U {r},
giving Ext(P, {i"}). Once this is achieved, ®'(P, {i"},X) will account for all melodies that
are composed with all of the pitches from P.

(III) The Distribution of k-Element Supports In 3. For a given rank (cardinality) k of PB,
we wish to determine (a) which sets of rank k are used by X, and (b) how many times
each set is used as a support of an A € ¥.. To get the result of (a), we simply take ®(K,)
for K C B of rank k. To answer (b), we need to get the result of ®(B,) for every B of
rank k. Then for rank &k, we have the quantity of aggregates A € 3 whose support is B for
B € R k).

To represent this information as a tuple, as we did for the rank distribution in Section
4.3.1.1, we must impose a total order on the set of k-element subsets of B. We can derive
this total order by first defining a total order on B itself. Suppose that B is totally ordered,
and B; is the value of the ith position of B. We can construct the totally ordered set of
k-element subsets of B by defining the following algorithm consisting of k nested ‘for-loops’:

For instance, if we have B = {a, b, ¢, d} totally ordered as (a, b, ¢,d), and we wish to get
the total order of all of its 3-element subsets, we follow the algorithm and get the ordered
set

K = ({a,b,c},{a,b,d},{a,c,d},{b,c,d}). (4.11)

Therefore given a total order on B, we have a canonical method of totally ordering the set
of k-element subsets of B.

4.3. ANALYSIS OF SUPER DOMAINS 83

Algorithm 1 Total order of k-element subsets of B

K =)
for i € I do
for jeI—{1} do

foriel—{1,...,card(B) — (card(B) — k)} do
K.append({B;,Bj,...,By})

Using K above (4.11), if we are given a super domain ¥ over B, we can map its totally
ordered set K of 3-element subsets to a point 2 € N* whose ith component consists of
the quantity of aggregates A € ¥ whose support is the ith position of K. For instance,
if x = (3,0,1,1), then ¥ has 3,0,1, and 1 aggregates whose supports are, respectively,
{a,b,c},{a,b,d},{a,c,d}, and {b,c,d}.

Given a set S of super domains over B, with B totally ordered and card(B) = n, we
can define

= : S — N

sending each ¥ € S to its tuple representing the quantity of A € ¥ that have a specific
k-element support. We can refer to such a function as a ‘k-distribution’. This function
is in some sense opposite to the A function from Equation 4.4, which provides the rank
distribution. Whereas A provides information regarding the ‘vertical’ distribution of sup-
ports of X, = provides information regarding their ‘horizontal’ distribution. In general,
the ‘horizontal’ situation is messier than the ‘vertical’ situation. For instance, we need
card(B) + 1 functions in order to define Z(S) for k in the range 0 to card(B). We also

therefore require a unique domain N() for each . Furthermore, we require a choice of
total order on B, whereas PB naturally comes equipped with the total order given by the
functor R : PB — FinOrd.

However, the increase in messiness of the horizontal distributions corresponds to an in-
crease in depth of information. Whereas the vertical rank distribution hides all information
regarding which particular supports are used by aggregates, the horizontal k-distribution
specifies this information precisely. Moreover, the rank distribution can be recovered from
the k-distribution by summing all ith components of Zx (%), letting k vary over all ranks.

An application of the k-distribution is the following;:

Application 4.5. Suppose we have ¥, %' € S over the (totally ordered) basis B. We can
compare their values under Zj, in various ways. For instance, if Z5(X) # Zx(X), yet Zx (/)
can be transformed into Z;(X) by permuting the values in its vector, then this suggests
some kind of relationship between ¥ and Y. For starters, it means that there is a bijection
f : B — B which can be used to change the total order of B used for X into the total order
of B used for X'. Denoting this variant of 3’ by ¥, we would then have Z;(¥) = Zx(X}).
This defines an equivalence relation on S, where for any 3, € S, we would have X ~ ¥’

84 CHAPTER 4. AGGREGATES

if there exists a bijection f : B — B such that Zx(X) = Z(X}). We could take this
a step further, and denote a stronger equivalence relation whereby ¥ ~ X' if for every
i €{0,...,card(B)} there exists a g : B — B such that =;(¥) = Z;(¥). A yet stronger
equivalence relation would be if this g was the same for every i. In this situation, there
would be a strong symmetry between ¥ and ', where for every aggregate A € 3, there
would be a unique A" € ¥’ such that g(sup(A)) = sup(A’). Under such a condition, we
could say that ¥ and %’ are weakly’ automorphic.

4.3.2 Analysis via mul

SUMMARY. We present analytical tools for investigating aggregates in terms of the multi-
plicities of their supports.

7§7

We now move on to the analysis of a super domain ¥ in terms of the multiplicities of
its aggregates. Specifically, we will be investigating the multiplicities of aggregates for the
following reasons:

1. To consider under what condition two aggregates can be considered ‘homomorphic’.

2. To evaluate the ubiquity of a basis composition b € B in 3. This contrasts with the
task of Section 4.3.1.2, insofar as in that section we only took into account whether
or not b was in the support of each A € ¥, whereas in the following section we take
into account the multiplicity of b in each A.

4.3.2.1 Aggregate Homomorphisms

SUMMARY. We define aggregate homomorphisms. Such homomorphisms are rather un-
usual compared to the usual homomorphisms that occur elsewhere in mathematics. We
demonstrate how aggregate homomorphisms are built up from the more general concept
of a ‘local homomorphism’ of aggregates.

7§7

In mathematics, two objects X and Y are called homomorphic if, to some extent, they
have the same structure. The question of whether or not two objects are homomorphic
can only be answered once a uniform context is given for determining the structure of X
and Y. For instance, if X and Y are groups, then we can check whether or not X and Y
are homomorphic as groups with the following criterion:

"We say ‘weakly’ since this condition does not yet take into account the multiplicities of ¥ and II.

4.3. ANALYSIS OF SUPER DOMAINS 85

Definition 4.3 (Group Homomorphism). Two groups G and H, under the binary opera-
tions of + and *, respectively, are homomorphic if there exists a function ¢ : G — H such
that

p(a+b) =p(a) * p(b)
for every a,b € G.

Now suppose we were to frame G and H in a new light after realizing that the binary
operations x : G XG — G and ¢ : H x H — H turn G and H into rings. Then ¢ would still
constitute a homomorphism on their underlying groups, yet it might fail to constitute a
homomorphism on their ring structure. Thus we would say that G and H are homomorphic
as groups but not as rings. This is why we require a context in order to determine whether
or not two objects X and Y are homomorphic. For instance, in the degenerative case where
we compare whether or not X and Y are homomorphic as sets, the answer is yes in every
instance, so long as X and Y are non-empty.

Now, our current task is to establish a homomorphism criterion for aggregates. In the
spirit of this chapter, our criterion will only take into account the multiplicities of basis
compositions. Also, we will work from a more general homomorphism criterion to a more
rigid one. The general criterion is that of ‘local homomorphism’; the idea is that two aggre-
gates are ‘locally homomorphic’ wherever they each have a basis composition sharing the
same multiplicity. For instance, if an aggregate A contains three b compositions, while an-
other aggregate A’ contains three b’ compositions, then A and A’ are locally homomorphic
at b resp. b'. Let’s now move on to the precise formalism.

Let ¥ be a super domain over B. Denote by PB + NT the category consisting of PB
along with the object N, where for any set X € PB, the hom-set Hompg (X, NT) consists
of all set maps from X to NT. Recall that an aggregate A is a specified by a pair (sup, mul)
where sup : 1 — PB + N7 is a functor picking out a set in PB +NT (other than NT itself)
and mul : sup(1) — N7 assigns its multiplicities. For an aggregate A, let sup(A) denote its
support set and mul(A) its multiplicity function. Now we provide the definition of local
homomorphism:

Definition 4.4 (Local Homomorphism). Let A and A’ be aggregates, and suppose b €
sup(A) and V' € sup(A’). Then A and A’ are locally homomorphic at the pair (b,b') iff
mul(A)(b) = mul(A")(b).

Hence for A, A’ € 3, we derive all pairs of local homomorphisms (b, b’) via the fibered
product

sup(A) xy+ sup(A) —22 5 sup(A)
pry mul(A’) (412)
sup(A) N*

mul(A)

86 CHAPTER 4. AGGREGATES

Example 4.2. Let A and A’ be aggregates, where sup(A) = {a, b, ¢} and sup(A’") = {p, ¢},
and whose multiplicities are given by the following:

1. mul(A) : sup(4) — N+

o a2
e b—3

e c— 3
2. mul(A’) : sup(A’) — NT

e p—4

e qg—3
Then we have the set sup(A) xn+ sup(A’) = {(b,p), (b,q)}.

The fibered product construction does not provide us with a homomorphism in the usual
sense of the word, since a homomorphism is generally conceived as a function ¢ : X — Y on
the underlying sets of X and Y. Instead, we are given a set of pairings (z,y) that establish
possible choices for homomorphic correspondences. Thus we define a partial homomorphism
between aggregates A and A’ as follows:

Definition 4.5 (Partial Homomorphism). A partial homomorphism between aggregates
A and A’ is a partial function 7 : sup(A) — sup(A’) such that the following diagram
commutes:

sup(A) ——— sup(A4’)

mul(A’) (4'13)
mul(A)|dom(x)
N+
where mul(A)qom(r) is mul(A) restricted to the domain of .

A partial homomorphism between A and A’ therefore corresponds to a subset m C
sup(A) xy+ sup(A’). This provides an alternative definition:

Definition 4.6 (Partial Homomorphism). A partial homomorphism between aggregates
A and A’ is a subset m C sup(A) xy+ sup(A’) such that if (b,c), (b,¢') € 7, then ¢ = .
Therefore 7 is a partial homomorphism iff it is a functional relation.®

8Recall that a relation R C X x Y is called functional iff (z,vy), (z,2) € R implies y = z, that is, iff an
element x € X appears no more than once in R.

4.3. ANALYSIS OF SUPER DOMAINS 87

A partial homomorphism 7 is called mazimal when pry(7) = pry(sup(A) xy+ sup(4’)),
where pry is projection on the first component. The idea is that 7 is maximal when as
many elements x € sup(A) as possible are mapped by 7.

With partial homomorphisms defined, we can now move on to the case of defining a total
homomorphism between aggregates. This would correspond to the standard situation in
mathematics, where objects X and Y are considered homomorphic if one is a substructure
of the other. For instance, a group homomorphism ¢ : G — H means either that G
is isomorphic to a subgroup of H, or that H is isomorphic to a subgroup of G. With
the groundwork laid out in the definition of partial homomorphism, we define a total
homomorphism as follows:

Definition 4.7 (Total Homomorphism). A total homomorphism between aggregates A
and A’ is a partial homomorphism 7 : sup(A) — sup(A’) where 7 is a total function.

The definition of an isomorphism between aggregates naturally follows.

Definition 4.8 (Isomorphism). An isomorphism between aggregates A and A’ is a total
homomorphism 7 : sup(A) — sup(A’) that is also a bijection.

A unique case of isomorphism is when sup(A) = sup(A’) = X. In this case, we can say
that A and A’ are symmetric, since the function f that makes

x —1 x
mul(A) mul(A’)
N+

commute is a symmetry of X, i.e., a bijection from X to itself.

4.3.2.2 Ubiquity of Individual Basis Compositions

SUMMARY. This section follows the line of thought from Section 4.3.1.2, where we discussed
the prevalence of individual basis compositions. The difference is that this section takes
into account the multiplicities of basis compositions.

7§7

In Section 4.3.1.2, we formalized the prevalence of a basis composition b in the super
domain II. There, the prevalence function merely took into account whether or not b was
present in some A € II, but it didn’t take into account the multiplicity of b in A. In this
section, we take into account the multiplicities of basis compositions in order to derive
their ubiquity in II.

88 CHAPTER 4. AGGREGATES

(TA) Absolute Ubiquity of a Basis Composition. Let Il be a super domain over B and
suppose b € B. Define the functor

wp : (1) — FinOrd (4.14)

that sends A € II to the multiplicity of its b component. We can confirm that pup is indeed
a functor since if Hompp (A, A") # &, then mul(A)(b) < mul(A’)(b), and therefore p;, sends
the (unique) morphism o : A — A’ to +(mul(A")(b) —mul(A)(b)) : mul(A)(b) — mul(A")(b).
To get the ubiquity of b in IT, we let the functor 7 : 1 — G(II) vary over all A € II, summing
the values of uy(A). We thus derive the ubiquity function

WD) = (). (4.15)

mell

(IB) Relative Ubiquity of a Basis Composition. Like in Section 4.3.1.2, we can let 7 vary
over a subset P C II. We can thus derive the relative ubiquity of b with respect to P by
restricting the II argument to P. Taking this a step further, we can define a functor

U(b,—) : PII - FinOrd (4.16)

that sends each P C II to U(b, P). This would provide a method of tracking how ubiquitous
b is locally, i.e., with respect to subsets of II.
We know that U (b, —) is a functor since it sends inclusions i : P < @ to the function

+(UD, Q) — U, P)) : U(b, P) — U(b, Q).
Let us see an example of this functor in action.
Example 4.3. Let B = {a,b,c} and Il = {P,Q, R} defined as follows:
o P—{(a,3),(4),(.2)}
e Q= {(b1),(c.1)}
o« R={(a,4)}

We then get the correspondence in Figure 4.2 via the functor U (b, —).

(ITA) Comparing Absolute Ubiquity of Different Basis Compositions. We can also compare
the ubiquity in II of different basis compositions b,...,h € B. We simply let the first
argument U (—,II) vary over the elements of B. We can view U(—,II) as a functor. First,
consider B as a discrete category with objects b € B and only identity morphisms. Then
U(—,II) : B — FinOrd is a functor that assigns to each b € B its ubiquity in II.

4.3. ANALYSIS OF SUPER DOMAINS 89

PII FinOrd

Figure 4.2: The action of U (b, —) is shown by the dotted lines. The reader can confirm
that U (b, —) is indeed a functor.

90 CHAPTER 4. AGGREGATES

In this situation, we can check whether some b is less (or as) ubiquitous than c if
Hompinord (U (b, I1), U(c, 1)) is non-empty, since this means that U (b, IT) < U(c,II).

(IIB) Comparing Relative Ubiquity of Different Basis Compositions. Finally, we can syn-
thesize (IB) and (ITA) by defining the functor

U(—,—) : B x P(II) - FinOrd. (4.17)

The product category B x P(II) has for objects pairs (b, P) for b € B and P C II, and
morphisms (Idy, 7) : (b, P) — (b, @) where Idy : b — b is a morphism in B and i : P — @
a morphism in P(II). Since B is discrete, the Id;-components of the morphisms must
be identity morphisms. Therefore B x P(II) essentially creates card(B) disjoint copies of
P(II), each copy being indexed by an element b € B.

The functor U(—, —) sends pairs (b, P) to the ubiquity of b with respect to P. In this
situation, we can evaluate the ubiquity of b with respect to P in comparison with the
ubiquity of ¢ with respect to @, by checking the hom-set Homgijnord (°u (b, P), U(c, Q)) If
it is non-empty, then ¢ with respect to) is more ubiquitous than b with respect to P. The
(necessarily) unique morphism in the hom-set tells us by how much, since it is the function
+n for n = U(e, Q) — U(b, P). If the hom-set is empty, then we know that b with respect
to P is more ubiquitous than ¢ with respect to Q).

We could have also achieved another method of comparison by evaluating the functors
WU(b,1T) and U(c,IT), and then comparing them via a natural transformation n : U (b, II) —
U(c,IT). This would enable a comparison between b’s ubiquity at each P € P(II) to ¢’s
ubiquity at P.

4.3.3 Examples

SUMMARY. We provide some examples of super domains and analyze their properties.
5
Example 4.4. We provide this example in two parts.

(I) Chemical Elements. Consider the chemical elements from the periodic table as a super
domain Chem. In this case, we have as the basis of Chem the set Particles consisting
of protons, neutrons, and electrons. While the number of protons and electrons for a
neutral chemical element ¢ € Chem are known (they are equal to the atomic number),
the number of neutrons may vary, although their quantity can in general be calculated by
subtracting the atomic number from the atomic mass. For the sake of argument, however,
we can ignore the multiplicity assignments on neutrons; thus we will compare elements
¢, € Chem on the basis of their protons and electrons alone. To do this formally, we can
use the following method. Let ¥ be a super domain over basis B with B C B. We derive

4.3. ANALYSIS OF SUPER DOMAINS 91

Y/ B after ‘modding out’ B, by which we mean removing all data associated with the B

basis compositions. We thus get Particles/{neutron} as the super domain that allows us

to compare aggregates in Particles based on their proton and electrons distributions alone.
Before moving on, let’s define the following property for aggregates:

Definition 4.9 (Homogeneous). An aggregate A is called homogeneous when there exists
a unique n such that mul(A)(z) = n for all z € sup(A).

We know that for a neutrally charged atom A, it contains as many protons as electrons.
Therefore every aggregate C' € Particles/{neutron} is homogeneous.

(IT) Rank Distribution of Particles. Of the 118 standard elements of the periodic table,
all of them except for hydrogen contain all of the basis compositions of protons, electrons,
and neutrons. Hydrogen differs from the others as it does not contain neutrons. Therefore
the rank distribution of Particles is given by the tuple (0,0,1,117). Particles contains 0
aggregates with the empty support, 0 aggregates with singleton supports, 1 aggregate with
a 2-element support (hydrogen), and 117 aggregates with a 3-element support.

Example 4.5. Stockhausen’s Klavierstiicke XI. This piano piece consists of 19 musical
fragments dispersed on a page. The performer is told to start on any one of these fragments,
and once finished move to another one at random. The piece is finished after one fragment
has been played three times.

Let P denote the set of fragments. A realization of Klavierstiicke XI corresponds to
an aggregate A over P.

For a realization, a p € P can be played anywhere from 0 to 3 times. If it is played
3 times, then all other ¢ € P can be played anywhere from 0 to 2 times. A realization
of Klavierstiicke XI therefore corresponds to an aggregate A whose vector representation
v(A) = (a,...,3,..., k) contains one 3 and any number from 0 to 2 for all other components.
Let uw € P be the fragment that is played for a third time, thus the fragment that the piece
ends on. With respect to aggregates — and not with respect to e.g. the order that the
fragments are played — there are 3'8 = 387,420,489 realizations that end on w. Since
there are 19 fragments in total, and the piece can end on any of them, there are therefore
19 - (318) = 7,360, 989,291 realizations (in terms of aggregates). Thus the super domain
corresponding to realizations of Klavierstiicke XI has 7,360, 989,291 aggregates.

Example 4.6. We present this example in three parts.

(I) Databases of Faculty by Department. In this example, we consider an aggregate over
a set D of university department names. The idea is that a university corresponds to an
aggregate over D, given by its quantity of professors in each department d € D.

Let String be a set of strings of symbols, and let UniFac be the set of faculty members
at some university Uni. We can define a set function dep : UniFac — String that sends

92 CHAPTER 4. AGGREGATES

each faculty member to his or her corresponding department. For example, for x € UniFac,
if we have dep(x) = ‘computer science’, then x is a computer scientist at Uni. If we encode
String and UniFac as structures?, then this turns dep : UniFac — String into a structure
morphism. With this established, we can define a new structure

UniFacDep o Limit(UniFac v, String)

whose functional 1-addressed points are pairs (z,d) where z is a faculty member at Uni
and d his or her corresponding department.

Now, we are currently considering a super domain Xg,,; over D where D C String is a
set of department names in general, i.e., regardless of the particular university. For exam-
ple, we could have D = {‘computer science’, ‘philosophy’, ‘music’}. For each university U
we would get a unique structure

UFacDep Y Limit(U Fac dep, String)

Now suppose we want to find the set of all faculty members x € UFac that are in
department d € D. If we let d : 1 — String denote a functional structure morphism that
picks out a department d € String, then we have a diagram

1

UFac ——— String
dep
The limit of D is given by the pullback
UFac X string 1 S B—

pry d

UFac o String

where the functional 1-addressed points of UFac X s¢ring 1 are pairs (z,d) where € UFac
and d is some fixed department. Thus UFac X g¢ring 1 corresponds to the structure

dAWU — Limit(D).

Therefore dAtU consists of all faculty members € U Fac that are in department d.

9See Example 3.2 for how we convert sets into structures.

4.3. ANALYSIS OF SUPER DOMAINS 93

Given dAtU, we want to define an elementary composition whose content specifies a
professor in department d at U. For example, if d = ‘computer science’, we want to define
the elementary composition whose content corresponds to ‘computer science professor at
university U’. We thus define the following composition

dProf AtU : Determinable ({1 EIN dAtU}icr)

where f; picks out a computer science professor at U. The cardinality of the content of
dProf AtU is the quantity of computer science professors at U. Thus, for each d € D
we would get its multiplicity from the cardinality of the content of such a composition
dProf AtU. Once we have all the cardinalities of the content of each dProfQU for d € D,
we would get an aggregate over D. For instance, if

D = {‘computer science’, ‘philosophy’, ‘music’}

and U has 8 computer science professors, 5 philosophy professors, and 0 music professors,
then we would get an aggregate Ay = ({‘computer science’, ‘philosophy’}, mul), where
mul(‘computer science’) = 8 and mul(‘philosophy’) = 5.

For a set U of universities, we would thus get similar such aggregates over D, thus con-
stituting a super domain Y;;. Note that we have a potential problem. If there are multiple
universities with the same departmental distributions of faculty, then they constitute the
same aggregate over D. For the sake of this example, assume that we allow for a super
domain that is a multiset. We can do this by attaching a unique index to each A € ¥;;. For
instance, if we have two universities U,V € U that constitute the same aggregate A € X,
then we can index them with Ay and Ay. This provides a method for distinguishing
between two equal aggregates.

Many of the analytical tools discussed in Section 4.3 can be put to use to analyze >3,.
We will discuss some of them in what follows.

(IT) Prevalence of University Departments. In Section 4.3.1.2, our topic was to determine
which aggregates in a super domain contain a basis composition b. In the current example,
this question corresponds to asking how many universities U € U have the department
d € D, assuming that if there are no professors in department d then the department
d does not exist. We are provided with the quantity of universities in I/ that have a d
department via the prevalence function P(d,>y) from Equation 4.7.

We can also evaluate the relative prevalence of d with respect to a subset II C Y.
For instance, suppose that all universities in ¢/ are in the United States, and we want to
partition U according to the states that the universities are in. For US states s and ¢, let
> and ¥; denote, respectively, the subsets of 3, corresponding to all universities that are
in the state s and t. We can compare the prevalence of department d with respect to both
s and t via the prevalence function. If we have P(d,¥;) = n and P(d,¥;) = m, then we
can compare which state, s or ¢, has more universities with a d department.

94 CHAPTER 4. AGGREGATES

(II1) Ubiquity of Professors From a Given Department. In Section 4.3.2.2, our topic was to
determine the total quantity of a basis composition b in a super domain Y. In the current
example, this question corresponds to asking how many d professors there are in total in
Y. This is provided by the ubiquity function U(d,¥y) from Equation 4.15. As we saw in
Section 4.3.1.2, the ubiquity function extends to a functor

U(d,—) : PXy — FinOrd.

In the current context, this functor provides information regarding how many d professors
there are with respect to subsets of universities V C U.

Application 4.6. A practical use for this functor would be to evaluate how many d professors
there are with respect to different geographical locations. For instance, we can associate
a subset of universities with the (open) set constituted by the union of their geographical
coordinates. Let G : PYy — T be the function mapping subsets of Y, to the open sets
in T corresponding to their geographical coordinates. When we evaluate U (d, —) over two
arguments X, X € PYy, we are essentially evaluating how many d professors there are
in the geographical locations G(X1) and G(X k). Thus, for two people p, ¢ wishing to study
under a professor from department d (say, for a PhD thesis), but p within a geographical
location close to some open set U € T and ¢q close to some other V' € 1, we can compare
how many different options they would have via U(d,G~1(U)) and U(d, G~1(V)), where
G~! maps open sets in T back to their subsets ¥; € PYy. For instance, if p wants
to live somewhere with a warm climate, whereas g wants to live in a metropolitan area,
then they would (probably) have different options for where they study. Supposing that the
universities in warm areas correspond to an open set W € T, and those in metropolitan areas
to an open set M € T, then we compare the values of U(d, G~ (W)) and U(d, GL(M)).
If
Hompinora (% (d, G~ (W), %(d, G~ (M))

is non-empty, then ¢ has more options for d professors to study with than does p. Vice
versa if

HomFinOrd (Gu' (da G_l (M))) U (d7 G_l (W))>

is non-empty.

4.4 Super Domains as Compositions

SUMMARY. A method for translating super domains into elementary compositions is pre-
sented. This requires us first to introduce the notion of a universal super domain. Once
this latter concept is defined, we will then be able to present the category of super domains.

7§7

4.4. SUPER DOMAINS AS COMPOSITIONS 95

In this section we demonstrate how a super domain 6 (%) can be translated into an
elementary composition. Such a translation is highly fruitful, since it allows us to massively
enrich the notion of a super domain, as well as the aggregates that it contains. Once the
translation of super domains into elementary compositions is achieved, we no longer are
required to keep aggregates A € ¥ static, and can instead let them vary. We call such
aggregates variable aggregates, and the super domain containing variable aggregates is
called a wvariable super domain.

We will first define what we call a universal super domain YT over a basis B, and then
show that a super domain over B corresponds to a diagram D : J — G(Y). When we
convert J and 6€(Y) into structures, then such a diagram corresponds to an elementary
composition, where J is the domain and 6(Y) the codomain of the composition’s content.

4.4.1 Universal Super Domains

SUMMARY. The concept of a universal super domain is presented. A universal super
domain is a super domain consisting of all possible aggregates over a basis. We then
translate such constructions into constructions in Str.

7§7

Our first task is to define a super domain ¥ in terms of a universal super domain Y.
The universal super domain over B is the super domain consisting of all possible aggregates
with basis B. Therefore for every B C B, and for every mul € Hompg n+(B,NT), we
have (B, mul) € T.

Now let ¥ be a super domain over B and J an index category isomorphic to 6(X).
Then we can identify 6(X) as a diagram

Dy : J — B(Y). (4.18)

Any super domain over B can be identified as a J-shaped diagram in €(Y), for J an
arbitrary index category. Therefore our translation of a super domain ¥ into an elementary
composition requires a translation of J and €(Y) into structures, and the diagram Dy, into
a structure morphism.

Let us now provide this translation. We will see that J gets translated into a partial
order and 6(Y) to a partially ordered N-module.'’ The functor Dy, gets translated into a
structure morphism satisfying some special conditions, to be discussed later.

ONote that in this section, the way that we conceive of a module is more general than the usual math-
ematical situation. In the latter context, a module consists of a group M along with an action by a ring
R on M. In the current context, we let both M and R be more general kinds of objects. Specifically, we
define an N-module as a monoid N equipped with an action by N on N".

96 CHAPTER 4. AGGREGATES

(I) Translation of J Into a Structure. J corresponds to the underlying quiver of 6(X).
Since the morphisms in 6(X) determine a partial order on ¥, we need merely to define
the partial order relation < on the set Jy of objects from J. So we can translate J into
an elementary structure (Jy, {<}), and thus we derive the functor PSh({=<}) = Fu via
Equation 3, giving us the structure

J< Fuj@>J0 Simple(Q.Jp).

(IT) Translation of 6(Y) Into a Structure. We first want to translate T into a structure
corresponding to an N-module whose basis vectors correspond to elements b € B. Then
we need to define a partial order on this N-module to give it the categorical structure of
G(7).

First, we need to show that T does indeed correspond to an N-module. For card(B) = n,
we need to show that T corresponds to N™. Let’s see how this is the case. We have
for a subset B C B all the aggregates A € YT with support B. Therefore for every
mul € Hom,,peap(p)n+ (X, NT) we have (B,mul) € T. Denote by Tp the set of all
aggregates in ¥ with support B. This furnishes an injection

iB:TBHNn

that sends each A € Tp to the element in N whose b-components are the multiplicity of
bin A, with b =0 when b ¢ B. Note that if A is the (necessarily unique) aggregate whose
support is the empty set, then igz(A) = (0,...,0), i.e., A gets mapped to the zero vector.
We then get
IT is(rs) =N,
BeP(B)
establishing the correlation between T and N”.

Now we define the module structure on N". We showed how to define monoids as well
as modules as elementary structures in Example 2.3. The only new addition we make here
is to endow N™ with basis vectors corresponding to each b € B. We can specify these basis
vectors by defining the following generator, which is an injection

B:B—N"

that associates each b € B to its basis vector v, € N*. (While it is not totally necessary
to define a module structure on N™, rather than e.g. a monoid structure, the module
structure is a typical choice for constructing an object with ‘coordinates’. In this context,
a coordinate represents an aggregate over B.)

We also partially order N™ to correspond to the partial order of 6(Y). We define the
generator <: N — N” where for u,v € N, we have u < v iff u; < v; for all 7 ranging over
the positions of u and v’s vectors.

4.4. SUPER DOMAINS AS COMPOSITIONS 97

Thus for an elementary structure (N, R), we get PSh(R) = Gu, and thus we can define
the structure
N2 — Simple(@N"
< G Simple(GNY),
which corresponds to 6(Y). Specifically, NZ is a partially ordered N-module, where the
partial order corresponds to the morphisms in 6(Y) and the elements of the module cor-
respond to the objects in €(Y).

(III) Translation of Ds, : J — B(Y) Into a Structure Morphism. Our last step is to
translate the diagram Dy, : J — 6(T) into a structure morphism Ay, : J<x — NZ. This is
simple, since the value of Dy; on the objects of .J is equivalent to the value of Ay, on the
elements of J<.

For partial orders P and @), an order-preserving map f : P — @ is such that if a < b
for a,b € P, then f(a) < f(b). So let © C Homgt,(J<,N%) denote the set of all order-
preserving structure morphisms between J< and N%. We want to see if the set of J-shaped
diagrams in €(Y) is in bijection with ©, to ensure that each unique super domain Ds;(.J)
corresponds to a unique order-preserving structure morphism Ay (J<). In other words, we
want to prove that sets Homcat (J, C@(T)) and © are in bijection. We thus introduce the
following

Lemma 4.1. The set of order-preserving functions between partially ordered sets X and
Y is in bijection with the set of functors between their corresponding posetal categories P X
and PY .

Proof. We prove this via the following sublemmas.

Lemma 4.4.1. There is an injection from the set of functors from PX to PY to the set
of order-preserving functions from X to Y.

Proof. Only one functor F' : PX — PY can correspond to the order-preserving function
f: X — Y. If there are functors F,G : PX — PY such that F(x) = G(z) for all z € X,
then this means that F' and G correspond to the same order-preserving function. We show
that if /' and G are equal on objects, then F' = G. If F(z) = G(z) for all x € X, then for
any 2/ € X we of course have Hompy (F(z), F(2')) = Hompy (G(z), G(2')). Since such
hom-sets contain at most one element, we thus have that F(i : ¢ — 2’) = G(i : « — 2/)
for all morphisms ¢ in PX. Hence F' = G. Therefore there is an injection from the set of
functors from PX to PY to the set of order-preserving functions from X to Y. O

Lemma 4.4.2. There is an injection from the set of order-preserving functions from X to
Y to functors from PX to PY.

Proof. Only one order-preserving function can correspond to the functor F' : PX — PY,
namely the function that is equal to F’s value on objects. O

98 CHAPTER 4. AGGREGATES

Since we have injections in both directions, namely from functors to order-preserving
functions and vice versa, we therefore have a bijection.]

We thus get the following theorem.

Theorem 4.1. The set © of order-preserving structure morphisms from J< to NZ is in
bijection with the set Homgag (J,%(T)) of functors from J to 6(T).

Proof. Translate J< and N2 into the posetal categories P.J< and PNZ. From Lemma 4.1 we
know that the set © is in bijection with Homca¢ (P J<, PN’%). Since we have isomorphisms
PJ< = J and PNZ = 6(Y), we get the obvious bijection

Homcat (PJ<, PNZ) = Homcat (J, C@(T)) (4.19)

O]

4.4.2 Super Domains as Elementary Compositions and Categories of Su-
per Domains

SUMMARY. We demonstrate how to translate super domains into elementary compositions.
This will enable us to present the category of super domains.

7§7

For structures J< and N2 where J< is a partial order and N2 a partially ordered
N-module over the basis B, a super domain over B can be encoded as an elementary
composition

SupDom : Determinate(J< EN N%), (4.20)

where A is an order-preserving structure morphism.
In the next few sections, we investigate categories of super domains.

4.4.2.1 The Category of Super Domains

SUMMARY. The category of super domains is presented.
g

Let PoSet be the set of simple structures in Str that constitute partial orders on
countable!! sets. This means that each P € PoSet corresponds to an elementary structure
S = (X,{<}), where < partially orders X. Next, let PoMod denote the set of structures
in Str that determine posetal N-modules over arbitrary bases of compositions.

We have the category SupDoms as follows:

A countable set is a set whose cardinality is less than or equal to the cardinality of N.

4.4. SUPER DOMAINS AS COMPOSITIONS 99

1. For objects, we have the disjoint union PoSet LI PoMod.

2. For morphisms, we have order-preserving structure morphisms 6 : P — X under the
condition that P € PoSet. For morphisms whose domain is an M € PoM od, we have
only the identity morphism Idys. (We will explain later why we restrict morphisms
on N-modules to be identities.)

Now we want to define the category consisting of all super domains over some basis B.
Thus, for M € PoMod a module over the basis B, take the over category SupDoms/M,
consisting of the following;:

1. For objects, all morphisms (6 : P — M) € SupDoms; with codomain M.

2. For morphisms, all morphisms (f : P — P’) € SupDoms; such
P ! P
M

Since each object (0 : P — M) in SupDoms/M is an order-preserving structure
morphism from a poset to an N-module over B, this means that an object in SupDoms/M
corresponds to the content of an elementary composition, e.g. as in

comimutes.

SupDom : Determinate(P 4 M)

Therefore, we can think of the category SupDoms/M as constituting the category of super
domains over B. A morphism in SupDoms/M thus corresponds to a morphism of super
domains.

4.4.2.2 Determining Morphisms Between N-Modules

SUMMARY. The problem of determining morphisms between N-modules is discussed. The
situation is not so obvious, as we will see.

§

The reason we restricted morphisms in SupDoms on N-modules to be identities is (1)
because we have no reason to map from modules to posets, and (2) because it is not clear
what types of morphisms we should allow between modules. An obvious choice would be to
allow for maps ¢ : M — N between modules that correspond to homomorphisms on their

100 CHAPTER 4. AGGREGATES

monoids. The reason that this does not suffice is for the following possibility. Suppose
we define a super domain Y over B. We may realize that each A € X has some ‘hidden’
composition h ¢ B, so that when we go back to observe ¥ we realize that each A € ¥
has some h material. Thus we’d derive a new super domain ¥; over B U {h}. In such
a situation, it may be the case that an aggregate A that precedes A’ in €(X). However,
once we add the hidden i components, we may derive an Aj, and A} such that Aj; does
not precede A in 6(3;). To see how such a situation can destroy the condition for a
monoid homomorphism, consider a super domain Y over B containing the null aggregate
Ag. Let My, denote module over B. The null aggregate Ay corresponds to the identity
element (zero vector) in My. Now it may be the case that, later on, we observe a hidden
basis composition h ¢ B that is indeed present in many aggregates A € ¥, so that we
must extend B to BU {h} and ¥ to ¥j. If A5 is one such aggregate that contains h, then
a mapping f : My — My, would send 0 € My to a non-zero element in My, . Since an
N-module homomorphism must map identity elements to identity elements, f is not such
a homomorphism.

Another problem is that introducing the basis composition h € B contained in many
A € Y could destroy the partial order on Y. For instance, suppose we have Ag, Ay €
Y, where Ay is the null aggregate and A, the aggregate consisting of the single basis
composition b € B with multiplicity 1. Then Ay < Ap. However, if, after realizing the
existence of h in Ay and Ap, we could find that Ay contains more h compositions than
Ap. For instance, let 0,v, € My, denote Ag, Ay, respectively. Then under the desired
mapping f : My — My, that would send 0 and vy, to the aggregates that also contain their
h components, we have f(0) £ f(v), and thus f is not order-preserving. Therefore the
triangle

P

N
N

0 _ f o 0 ¢ SupDoms,

N
\
N
N

N
ME f) Mzh
does not commute.

Because of such dilemmas, there is no way to introduce the desired morphisms between
modules in SupDoms. However, if we remove all of the partial order information of the
modules, we can get more flexibility. The price we have to pay is that we will no longer
be able to encode the subsumptive hierarchy between aggregates in a super domain, since
no order information will be given. However, what we lose in subsumptive information we
gain in navigability.

We thus introduce the category SupDoms*. This category is like SupDoms except
less rigid. Instead of being built from the sets of structures PoSet and PoMod, it is built
from the sets of structures Set and Mod. The set of structures Set consists of all structures
corresponding to sets. This essentially carries over the underlying set of a form into Rel®.

4.5. VARIABLE AGGREGATES 101

The set of structures Mod is like PoM od just without the partial ordering relation defined
on each structure in PoMod. We thus have the category SupDoms* consisting of the
following:

1. For objects, we have the disjoint union Set LI Mod.

2. For morphisms, we have functional structure morphisms f : X — Y under the
condition that if X € Mod then Y € Mod. All other functional structure morphisms
are permitted.

We do not allow morphisms g : M — X where M € Mod and X € Set since we have no
reason to map from modules to sets.

In SupDoms*, a morphism ¥ : X — M for X € Set and M € Mod can be called
a super domain morphism, since it picks out a set of aggregates from the universe of all
aggregates M. Since neither X nor M are partially ordered, there is thus no longer any
encoding of the subsumptive relations — i.e., relations of inclusion — between aggregates.
However, we can now navigate between super domain more freely. To use an earlier example
from this section, let M, M) € Mod be the universal super domains over bases B and
BU {h}, respectively. If we have a super domain morphism % : X — M, and realize later
that the composition ¥(X) actually contains some hidden h compositions, then we can
define a map f : M — M), that makes

7\

M ————— My

commute.

Thus f carries the aggregates in ¥(X) to their corresponding aggregates in Mj,. There-
fore SupDoms* allows us to navigate between super domains over different bases, which
was not achievable in SupDoms.

4.5 Variable Aggregates

SUMMARY. Until now, aggregates have been presented as ‘static’ objects in the sense that
their supports and multiplicities are fixed. However, there are many practical situations in
which an object can gain and lose matter while still preserving its identity. Thus we present
the concept of a variable aggregate, which is an aggregate whose support and multiplicity
can vary.

7§7

102 CHAPTER 4. AGGREGATES

As we saw in Example 4.4, an aggregate can vary in terms of its lower level compositional
makeup. For instance, an oxygen atom can lose or gain protons, electrons, and neutrons.
Nonetheless, we still refer to such an atom as an oxygen atom, regardless of such variations
in its material constitution. We should therefore allow for a super domain to consist
not just of static, but mobile aggregates as well. In this section we will define variable
aggregates as well as variable super domains. But first, we will need to define a certain
class of compositions that can, for now, be called processes.

4.5.1 Processes

SUMMARY. The concept of a process is presented. Processes correspond to abstract net-
works that are realized concretely.

7§7

Processes constitute a class of compositions. The idea is that a process consists of a
set of states, along with transitions between states. Thus a process constitutes some kind
of directed graph. To encode such a process as a composition, we want the domain of the
composition’s content to be a directed graph, and we want its codomain to be some kind
of ‘state space’. This way, the content corresponds to an abstract graph being realized in
a concrete way.

We can define a directed graph as we defined quivers in Section 2.4.2. Thus for a vertex
set V, let

aDigraph iy 39 Simple(QV)

denote a directed graph.
For S an arbitrary structure, we can then define a process as a composition

aProcess : Determinate(aDigraph Eif S).

4.5.2 Super Domains of Variable Aggregates

SUMMARY. Now that we have presented variable aggregates, we should therefore consider
the possibility of having super domains of variable aggregates. Such super domains are
presented in this section.

7§7

To define a variable super domain, we first need to introduce variable aggregates.
Let P € PoSet, M € PoMod and let 3 : P — M specify a super domain.
Next, let

r — Simple(QF)

Fu—Q

4.5. VARIABLE AGGREGATES 103

be a directed graph.
We first define a pre-variable aggregate as an elementary composition

PV A : Determinate(I' = P). (4.21)

Such a composition simply specifies a process of possible transitions between positions in
P.

Now suppose we have a family { PV A;};cs of pre-variable aggregates, each defined by
PV A; : Determinate (I‘Z- N P).
Given such a family of pre-variable aggregates, we want to derive variable aggregates,

and then a variable super domain. We first translate each PV A; into a structure in the
canonical way:

Str(PV Ai) — Limit(T; o P).
We then get a variable aggregate as a composition
V A; : Determinate (Str(PV A;) &, M), (4.22)
which corresponds to the map Y om; : I'; — M.
To get an entire super domain of variable aggregates, we can take two approaches. The
first approach constitutes a variable super domain as a structure, the second approach as
a composition. For the first approach, we define a variable super domain by taking the

coproduct of all variable aggregates, as so:

VarSupDom Ty Colimit(VA,,...,VA,). (4.23)

For the second approach, we first define the coproduct structure

PreVarAggs o Colimit(Str(PV Ay),...,Str(PV A,)),
of pre-variable aggregates. We then construct the elementary composition

VarSupDom : Determinate (PreVarAggs =, M) (4.24)

The structure morphism X* sends each pair (v,p) € PreVarAggs to its corresponding
aggregate in M. For instance, for v € I';, we have ¥X*(v,p) = ¥ o m;(7). See Figure 4.3 for
a visual representation of a variable super domain.

CHAPTER 4. AGGREGATES

104

M*

Iy
N M
a
m Ay
b

g Ag

HMV »%# ‘ \»u >>®
L Ay Az
4

wilIIIiiiiye

Figure 4.3: The abstract graphs I'1,...I", are mapped into P, and the latter is then mapped into M, which contains
aggregates. Composing the morphisms Yom;(T';) establishes the process by which an aggregate can change its material
constitution, while still preserving its identity.

4.6. AGGREGATES WITH REAL-VALUED MULTIPLICITIES 105

4.6 Aggregates with Real-Valued Multiplicities

SUMMARY. We close the chapter by considering the situation where aggregates have real-
valued multiplicities, rather than the natural-valued multiplicities presented in this chapter.

7§7

To conclude this chapter, we consider the situation where aggregates take multiplicities
from R rather than N. There are many contexts in which this will be the better formalism,
some of which are the following:

e Chemical Mixtures. Suppose someone is constructing aggregates from certain
chemicals like water (H20), sulfuric acid (H2SO4), and the like. In such a context,
it would be ridiculous to measure an amount of water based on how many HyO
molecules it contains. Instead, one would use some other metric, like mass, or some
measuring value like tablespoons, etc. In this situation, a super domain ¥ over a
basis Chem of some chemicals should have for its multiplicities values in R.

e Paintings. One might want to analyze a painting P as a compound composition
over a basis Colors of colors of paint. In this case, it doesn’t make sense to consider P
in terms of an aggregate that assigns quantities from N to each ¢ € Colors. Instead,
it would be more useful to conceive of some metric such as ‘surface area’, and assign
each ¢ € Colors to the x € R that is equal to the surface area that ¢ takes up in the
painting.

e Sonic Spectrograms. A sonic spectrogram displays the frequency and amplitude
information of a given sound. For each frequency, a certain amplitude value is given.
Since amplitude values are taken from real numbers, we can define a ‘snapshot’ of
a sonic spectrogram as an aggregate whose support consists of all frequencies in the
snapshot, and whose multiplicities are the amplitudes of the frequencies.

One can imagine many other examples of super domains whose aggregates should have
real-valued multiplicities. For the most part, the formalism for dealing with real-valued
aggregates is the same as the formalisms of this chapter dealing with natural-valued ag-
gregates.

There is a crucial difference however between aggregates with N-valued multiplicities
and those with R-valued multiplicities. In the former case we are using discrete quantities,
in the latter continuous. Discrete quantities are in a sense absolute. For instance, if there
are 10 objects of kind x, then no matter the context, there will still be this collection of
10 z’s. On the other hand, real-valued quantities depend on a choice of metric, e.g. mass,
weight, surface area, etc. So the situation where aggregates have real-valued multiplicities
requires a specification of the metric used to evaluate the quantities of basis substances. It

106 CHAPTER 4. AGGREGATES

is important that this metric remain fixed for each aggregate of the super domain, or else
the relations between aggregates in terms of their multiplicities will be unclear.

As a final note, we emphasize a fundamental fuzziness with respect to real-valued
aggregates. To actually identify a real number would require infinite precision, since a
real number z has infinite values after the decimal. When we refer to real numbers, for
instance in scientific measurements, we necessarily must round off. Thus a real-valued
measurement is implicitly an open set U of real numbers, where for x,y € U our tools are
not precise enough to distinguish between x and y. Therefore real-valued aggregates will,
in any practical circumstances, have margins of error.

Part 11

Logic and Worlds

107

Chapter 5

On Meaning

5.1 Representationalism and Inferentialism

SUMMARY. We discuss two paradigms for formulating what constitutes meaning — namely
representationalism and inferentialism — and discuss their respective features.

7§7

5.1.1 Representationalism

SUMMARY. We present an overview of how the concept of meaning is treated according to
a representationalist perspective.!

7§7

The question of what constitutes meaning has a rich history. Our task in this chapter is
not to provide a historical overview of the concept of meaning, but instead to elaborate on
two philosophical positions, namely, representationalism and inferentialism. Our objective
is not to side with one or the other, only to bring to the reader’s attention to two compelling
viewpoints that provide context for the rest of this part of the book.

The representationalist theory of meaning is the classical one; it contends that “to mean
something is to stand for something”?. For instance, when I refer to a pen by calling it
‘this pen’; then the meaning of ‘this pen’ is the object itself, namely the pen. Dealing with
properties is more subtle. When I utter “This pen is red” then there is (1) the meaning
of the term ‘this pen’, and (2) the meaning of the property of redness. While the meaning
of the term ‘this pen’ is a concrete object, the meaning of ‘redness’ is not a concrete item,
but an abstraction (a universal); specifically, according to representationalism, properties

'For a historical overview, see [18].
2[18, p. 1084]

109

110 CHAPTER 5. ON MEANING

denote classes of items, and therefore ‘redness’ is interpreted as the class of items that
are red. Therefore, the statement “This pen is red” is given semantic content by checking
whether or not the object referred to by ‘this pen’ is in the class of items that have the
property of being red.

Representationalism is thus built on the distinction between syntax and semantics,
which correspond, respectively, to internal and external reality. Syntax consists in rules
for constructing grammatically correct sentences, as well as drawing valid inferences from
those sentences. An inference rule consists of a legitimate way to derive one statement
from another statement. The most famous inference rule is called modus ponens, which
says that given the statement “If P is true then @ is true”, and the verification that P is
true, one can therefore conclude that @ is true. Logically, this can be notated in sequent
form as

P — Q,PFQ.

On the other hand, semantics is the ‘external reality’ that verifies the truth of syn-
tactically correct statements. The classical version of this idea as conceived by Tarski is,
roughly, the following. We have a set® D of individuals that we wish to reason about. The
symbols in the language that are meant to refer to the individuals in D are called constant
symbols. We also have property symbols P, ..., P, that denote properties that can hold
of these individuals, as well as n-place relations that can hold between them?®. Then, for
each property/relation symbol P of arity k, there is a subset ¢ C DF, the elements of
which are k-tuples for which the property/relation denoted by P holds. For instance, if we
have the relation symbol < and the domain D = N, then the relation denoted by <, which
we can notate as [t, is the subset of N x N that consists of pairs (i,j) such that i is less
than j. More precisely, the statement “i < 57 is true iff (i,j) € [t. In general, for a relation
symbol R and constant symbols z,y, the statement xRy is true iff the objects denoted by
z and y stand in the relation denoted by R. This is kind of funny, when one realizes that
this is like saying that “This pen is red” is true iff this pen is red.

The representationalist paradigm proceeds from the bottom-up. We first have a do-
main D of objects, and then n-place atomic® predicates that classify those objects. This
constitutes a sort of ‘ground zero’ of predicates. The logical connectives A,V, = as well
as the quantifiers 3,V act as tools for synthesizing compound predicates. For instance,
given the 1-place atomic predicates P and), we can form the compound predicate P A Q.
A pair of objects x,y satisfy P A @Q when P(z) is true and Q(y) is true. This therefore
determines a subset B C D x D. We can keep building up more complex predicates by
stringing them together; e.g. we can create the predicate (P A Q) V R, again determining a
subset of some k-fold product of D. It is therefore clear that the meaning of a compound

3This set is called the ‘domain of discourse’, or simply ‘domain’, for short.

4Note that a property is simply a 1-place relation.

5 Atomic predicates are those of the form P(z1,. .. , Xk), i.e., those without any logical connectives and/or
quantifiers.

5.1. REPRESENTATIONALISM AND INFERENTIALISM 111

predicate is determined by the meaning of the atomic predicates that constitute it. This is
how, in the representationalist paradigm, meaning is generated from the ground-up. We
start with atomic predicates, and with the use of synthetic tools — viz. connectives and
quantifiers — we compose them together to form compound predicates.

Regardless of one’s ideological preference for a representational or inferential theory of
meaning, there’s no doubt that the Tarskian framework furnishes a powerful computational
resource.

5.1.2 Inferentialism

SUMMARY. We present an overview of inferentialism.

A contrasting view of meaning formulated in large part by Sellars in [19, 20, 21] and
Brandom in [4] is called inferentialism. Inferentialism also shares a resemblance to the
later Wittgenstein’s [22] theory of meaning-as-use. According to the inferentialist theory
of meaning, a statement does not get its semantics by virtue of its correspondence with
an external reality. Instead, the meaning of a statement is determined via its inferential
role in a web of other statements. For instance, when I make a claim such as “z is a dog”,
then I am committed to also claim that “z is an animal”. But I am also committed to
answer other questions pertaining to e.g. properties that a dog may have, such as whether
it has fur or hair, what color it is, its breed, etc. So, the meaning of “x is a dog” is
produced via such a process of unpacking. In this situation, there is no external reality
that contains the concept “dog”, along with an individual z, that allows one to confirm
whether or not z satisfies the property of being a dog. Instead, meaning is produced via the
dialectical process of giving and asking for reasons®, which is a process of elaborating upon
the connections that an utterance has to other statements that justify it. In other words,
“meaning is not a thing stood for by an expression”, but rather “a role the expression
assumes vis-a-vis the rules that govern it.””

Unlike the Tarskian logical apparatus for dealing with semantics, which is well-developed
and now has diverse applications, there is minimal work in logic coming from an inferential-
ist perspective. Something that is similar to the inferentialist framework in logic is the work
done in formalizing game semantics. In this context, the objective of the game is to prove
(for the assertor) or disprove (for the refuter) a given proposition. However, the semantics
is still formalized according to the Tarskian framework, which still upholds a distinction
between the language-game and the external reality that acts as a ‘referee’. However, there
is an area of logic developed by Jean-Yves Girard’s, called Ludics®, which provides a log-
ical framework that captures the crux of the inferentialist argument. In this work, there

°[4]
[18, p. 1092]
8[8]. A good introduction to Ludics is given in [12].

112 CHAPTER 5. ON MEANING

is finally a logical formalism that (apparently) provides the means to meaning-production
that is independent of the syntax-semantics distinction.

In contrast to the representationalist paradigm, the inferentialist paradigm proceeds
from the top-down. Given two language-users, You and Me, You utters some proposition
P. If P consists of subpropositions A, B, ..., then You must be prepared to justify them
when challenged by Me. Suppose Me chooses to focus on the subproposition A. Then
You must be prepared to justify A, which Me will then challenge by asking You to justify
A’s subpropositions Aq, As, ..., and so on. Meaning is thus generated by iteratively un-
packing a more complex proposition into its simpler components. Moreover, this iterative
unpacking is not necessarily deterministic, so meaning is ‘context-sensitive’, insofar as the
meaning of a proposition P depends on the specific dialogue that follows the utterance of
P. Meaning is also not determined by an independent reality, but generated immanently
to the dialogue itself, and therefore the inferentialist paradigm is much more dynamic than
the representationalist one. (In fact, the representationalist paradigm cannot itself sup-
port dynamism. If one wishes to incorporate dynamic predicates into a representationalist
paradigm, he must do so via more ‘artificial’ devices, for instance by injecting a temporal
parameter into the predicate language, as is done to define e.g. variable sets. But even
then the temporal parameter itself remains static!)

Summarizing the difference between representationalism and inferentialism, we may say
that in the representationalist paradigm, compound meaning is produced, whereas in the
inferentialist paradigm, foundational meaning is produced.

5.2 Uses and Abuses

SUMMARY. We discuss the uses and abuses of both the representationalist and inferentialist
paradigms.

7§7

It seems that inferentialism provides a more convincing depiction of the actual processes
that take place when meaning is being generated. It provides the machinery for investi-
gating how we start with fuzzy concepts and eventually arrive at more precise concepts.
It also provides an intuitive yet systematic understanding for something that happens all
the time, namely a concept changing over time. No longer in the inferentialist paradigm
do predicates denote static sets. Rather, the meaning of a predicate is contingent upon
the context in which it is uttered, and furthermore a predicate whose meaning has been
settled, e.g. in some dialogue, can be brought back into question and therefore revised,
without such a revision implying a destruction of the original meaning. Even in disciplines
where formal (Tarskian) predicates abound, such as the sciences, there is still the process of
the genesis of such predicates, and their genesis is not adequately framed by the Tarskian
perspective.

5.2. USES AND ABUSES 113

However, there are of course times when a more rigid database of predicates is required.
This is when a representationalist paradigm is likely the practical choice. For instance,
a predicate such as ‘is prime’ is clearly compliant with a Tarskian semantics. This is
because in mathematics, the domains of discourse are — in some sense — independent of
our formalisms of them. For instance, take two encodings of the natural numbers:

e Zermelo ordinals

1. 0:=0

2. 1:={0} = {o}

3. 2:={1} = {{o}}
4. 3:= {2} = {{{2}}}
5. :

e von Neumann ordinals

1. 0. =0

2. 1:={0} = {2}

3.2:={0,1} = {2, {2}}

4. 3:={0,1,2} = {2, {2, {2}}}

5. :

It is clear that (other than for 0 and 1) when we put Zermelo ordinals in correspondence
with von Neumann ordinals, they do not satisfy a set-isomorphism, since their sets for each
ordinal are of different cardinalities. For instance, according to Zermelo’s method, the set
representing each ordinal always has a cardinality of 1, whereas von Neumann’s method
produces sets of a cardinality equal to the set’s respective ordinal. But this simply means
that the set-theoretic structure of the two encodings is different; it does not mean that
the structure of the ultimate object that both constructions encode (namely, the natural
numbers) is different. To treat two structures as the same does not require that they be the
same all the way down to their origins. All that is required is that they be the same with
respect to the certain aspect of them that we choose to focus our attention upon. When
we denote a mathematical object, such as N, our denotation is conditioned by an implicit
agreement that the mathematical community has with regards to the specific aspect of N
that we are interested in. In the case of N, the specific structure that we are interested in
is, generally speaking, a totally ordered set of infinite size. When presented with an ordinal
n, we rarely ask for its set-theoretic encoding.

Returning to our point on defining predicates on such mathematically precise domains
of discourse, we see that predicates such as ‘is prime’ are invariant with respect to different

114 CHAPTER 5. ON MEANING

encodings. For instance, we may have any encoding of N as we like, and such a choice will
not affect the fact that 3 is a prime number.

Predicates such as ‘is prime’, along with their amenability to simple and precise ver-
ification, are the kinds of predicates that abound in mathematics. For instance, if we
are given a set I’ of functions f : X — Y, and X and Y are endowed with topological
structure, we may want to know which of those functions are continuous. Here again we
have a precise criterion for whether or not a function is continuous, and therefore we easily
get a set C C F of continuous functions, by verifying which elements f € F' are indeed
continuous as determined by the criterion of continuity.

Of course, predicates defined on rigidly defined domains of discourse are the exception,
not the rule. A Tarskian paradigm for dealing with predicates falls apart when we are
confronted with checking predicates that are more loaded with implications, such as e.g.
whether or not a piece of music is ‘beautiful’, or a duck is ‘annoying’.

We can crudely summarize the virtues of representationalism and inferentialism by
saying that representationalism is a better scientific instrument, whereas inferentialism is
more correct with regards to the process of meaning-production.

5.3 Is Versus Ought

SUMMARY. In this section, we will see that the representationalist paradigm provides the
framework for resolving what is the case. On the other hand, the inferentialist paradigm
paradigm provides the machinery for investigating what ought to be the case.

§

5.3.1 The Question “What is 27” as an Implicit Normative Question

SUMMARY. We suggest the thesis that questions of the form “What is 7”7 are questions
involving what = ought to be.

7§7

There are two ways to view a question of the form “What is 7?”. The common view
is that = has some implicit nature or essence, and that our answer to the question should
reveal the essence of x. Or, even if we admit that there are no such things as ‘essences’, and
that reasoning consists of mental representations of phenomena, as Kant would maintain?,
we often still assume that there is something like an essence inherent to our reasoning
conventions (as Kant presumed). Therefore when we answer the question “What is 277, a
Kantian would maintain that we are not revealing the nature of the Ding an Sich, but he

°[9]

5.3. IS VERSUS OUGHT 115

may still maintain that we are revealing a sort of ‘logical essence’, such as the essence of
our representational apparatus.

A contrasting view is that the question “What is £?” is the originary site of a process
whereby x acquires a kind of ‘deontic status’. The idea is that when we ask “What is 277,
it is not that we are gradually revealing the essence of x. Rather, we are defining what x
ought to be: for instance, what x ought to be in order for us to use it in the ways that we
do. Try asking for yourself “What is x7?” for some z, and see if your attempts to define it
are not attempts to understand what x ought to be in order for you to carry out certain
activities.

This view suggests that there is a world of action W in which x is embedded, and that
attempts to define x are, in reality, attempts to firmly establish x’s role in the world W.
Such a process, whereby the meaning of = is gradually revealed by explicating z’s role in
W, is the process whereby x attains deontic status. The process by which objects acquire
deontic status — which is through a process of conceptualization — is a driving force of
human conduct. Through it, the world transforms from anarchy to order, by virtue of the
fact that the concept’s use becomes regulated.

Note, however, that the world W can become the object of the question “What is W7?”.
Such a question requires a higher-order world W where W exists as an object, and itself
attains deontic status via the process of explication of W’s role in W. This process of
explication changes W itself, and therefore changes the objects x that occur in W. We can
then continue the question, asking “What is W?”, where W occurs in 20, and so on.

5.3.2 The Pragmatic Nature of Meaning-Production

SUMMARY. We discuss the pragmatic nature of meaning-production.
—§—

Let us return to the concept of meaning in the inferentialist paradigm. In this paradigm,
meanings are not a priori given via some external semantics that verifies statements; rather,
meanings are produced via dialectical elaboration upon a certain statement, generating
threads of inferences. The inferentialist paradigm captures the idea that humans, as lin-
guistic beings, communicate with one another by giving and asking for reasons. When you
make a claim P, then your claim entitles me to ask you for reasons that justify your claim
that P is the case. Upon receiving justifications from you, I can yet-again ask for justifica-
tions of those justifications, and so on. While this process of giving and asking for reasons
can, in principle, continue indefinitely, it is perpetually being stopped for a specific reason:
namely, because humans create finite descriptions of things in order to specify what traits
those things ought to have if they are to be used in a certain way. In other words, human
discourse has as one of its objects the project of creating tools. A concept-as-tool does not
arise from an infinite process of dialectical refinement. Rather, it arises by suspending the
discourse and setting as final certain propositions. We will see an example in section 5.4.

116 CHAPTER 5. ON MEANING

So, meaning is produced in order to establish rules of human conduct. For instance,

consider the following dialogue between agents A and B:
A: Here’s a new object I made.

: What is it?
It’s a metal shaft with a large metal object at the top.
: What’s it used for?
Well, you can bang it against things with great force.
: Why would I want to do that?

wor W ox W

A: If you have some wood that you would like to connect together, you can
grab some metal nails and bang a nail through one piece of wood to another,
therefore connecting them both.

B: 1 see. What do you call it?
A: A hammer.

In this situation, the meaning of the object under consideration — the hammer — is
generated via the dialogue between A and B. However, what meaning was generated?
All that was really expressed was the fact that this new metal object can be used to bang
certain things, such as nails, into other things. The full applicability of the hammer was not
expressed, but only a partial description of what constitutes a ‘proper’ use of the object.
For instance, if B has violent tendencies, then he may use the object to kill someone. In
this case, we can say that the meaning of hammer was changed by B’s extending its range
of application. This is far from the Tarskian situation, where the concept ‘hammer’ would
be conceived as a predicate that classifies all objects that satisfy some abstract criterion
for being a hammer. In the Tarskian situation, there is no mention of the object’s use,
and furthermore the object is conceived of totally independently of its use. This makes the
meaning of ‘hammer’ purely static. On the other hand, in the inferentialist framework, the
meaning of ‘hammer’ is dependent on the context in which it is explained, and this seems
very natural when it comes to the dynamic process of humans acquiring new concepts.

5.4 The Path to Formal Predicates

SUMMARY. Our goal in this section is to show how the possibility for representation is
conditioned by inferential processes of meaning-production. Two experiments are provided
to articulate this notion.

7§7

Let us now demonstrate two experiments in meaning-production.

5.4. THE PATH TO FORMAL PREDICATES 117

Experiment 5.1. Consider the following dialogue between A and B.

A: This curve is smooth.
B: What does it mean for a curve to be smooth?

A: Here, look at these examples of curves. All of them are smooth, except for
the one to the right which has jagged edge, circled in red.

B: And so that means it’s not smooth?
A: Correct.

B: Ok, but then how would I, when given any curve, be able to tell if it’s
smooth or not. Clearly it would be cumbersome if I had to look at the entire
curve, and somehow notice a jagged edge. Also, couldn’t there be other ways
in which a curve could not be smooth, even if it doesn’t have a jagged edge?
Given your justifications for what constitutes a smooth curve, I am still not
confident in what actually is a smooth curve.

A: You are correct. Let’s try to formulate this more precisely ...

This is the beginning of a dialogue that will eventuate in a fully rigorous definition of
what constitutes a smooth curve. Looking at this debate from a historical perspective, it
was the case that in order to define a curve, one had to define continuity; and in order
to define continuity, one then had to construct point-set topology. Once the notion of
a topological space was given precise axioms, we were then able to define a continuous
function between such topological spaces. When we were able to understand what consti-
tutes a continuous function, we were then able to define a curve as a continuous function
f :]0,1] - X from the unit interval into some topological space X. We also needed to
define what it means for a function to have a derivative!®, and so on. Finally, we can
then define a smooth curve as a continuous function v : [0,1] — R™ that is continuously
differentiable. Now, we may replace the entire dialogue above with the following one:

100f course, the concept of ‘derivative’ was conceived before topology and therefore continuous functions
etc.

118 CHAPTER 5. ON MEANING

A: This is a smooth curve.
B: What’s a smooth curve?

A: A function 7 : [0,1] — R™ that is continuously differentiable.

Furthermore, the meaning of the statement “this is a smooth curve” no longer requires a
dialogical process of explication. The meaning of “this is a smooth curve” is now completely
encoded via the axioms of topology. So now ‘smooth curve’ is a Tarskian predicate, as it
takes as its domain of discourse the set F' of continuous functions, and is true for f € F
whenever f is of the form f : [0,1] — R™ and is continuously differentiable.

However, a crucial point is that it was the dialogical process of giving and asking for
reasons that led to the formal encoding of the concept of ‘smooth curve’. Therefore, the
inferentialist paradigm provides the framework that allows us to see the process by which a
fuzzy concept becomes totally unfuzzy. This is very much like how the function of Socratic
dialogue is to move from a fuzzy concept to an Idea, an Idea being more like a Tarskian
predicate. This leads us to the following

Dictum 5.1. Reference is impossible without an inferential process that conditions it.

The possibility of fully precise reference is an indication of how successful an inferential
process was. For instance, the fact that I have a fully precise reference for the concept
‘smooth curve’ means that the historical-inferential process of defining what constitutes a
smooth curve succeeded. Of course, the question of how successful an inferential process
really is is by no means simple. This is why mathematical concepts are so-often revised.
For instance, when Frege sought to answer the question “What is Number?”, he came up
with the formalism as outlined in [7], where numbers correspond to extensions of concepts.
Someone could have asked him, “Is this object, z, the number 07”, and he could respond
by saying “x is 0 iff x is the extension of the concept ‘not self-identical’.” However, upon
learning of Russell’s paradox, this logical framework for defining Number was shown to be
insufficient, and therefore Number had to be redefined. This gives us a

Principle 5.1. The reference of a concept can change when the rules of the game (of the
inferential process of which the concept is the result) change.

Experiment 5.2. Consider the following dialogue, again between A and B.

A: This rug is ugly.

B: How so?

A: The colors don’t blend well.
B: T agree.

5.5. WARNING! 119

This dialogue has some crucial differences from the first dialogue between A and B.
Notice that B requires A to justify the statement “This rug is ugly”, which A does by
stating that the colors don’t blend well. At this point, B is in agreement with A that the
rug is ugly (because the colors don’t blend well). But what exactly are A and B agreeing
on? In this situation, it is clear that there is no Tarskian predicate for ‘ugly’, insofar as
neither A nor B has provided a necessary and sufficient condition for an item x to be ugly.
We can say that they are both referring to the same object (the rug), but not that they
are referring to the same property (‘ugly’).

Also, notice that B’s first response is “How so0?”. This is a much different question
than “What s ugliness?”, which is the type of question that usually has the potential to
evolve into a Tarskian predicate. We could say that ‘ugly’ is just a name, and that it may
denote different predicates depending on the context. Thus, when I say “z is ugly”, and
you respond with “How so?”, your response could be interpreted as the question “Which
predicate bearing the name ‘ugly’?”, where there exists some set of predicates {Pl, cen Pn}
all having the name ‘ugly’. But still, this implies that there is a set of ready-made properties
P; that I am simply selecting from, which is not at all how discourse actually proceeds. At
the end of the discourse, there is agreement on the meaning of the statement “This rug is
ugly” even though the property ‘ugly’ remains fuzzy.

However, a thorough skeptic would take the dialogue further, as he would not be sat-
isfied to come to agreement on a fuzzy proposition. Such is the skepticism of Socrates:
by asking his interlocutor to define a certain concept, Socrates will only concede once his
interlocutor has fully removed all fuzziness from the concept (— which never happens). For
Socrates, fuzzy reality is Hell, and he is condemned to observe others unwittingly drag
themselves into the tormenting labyrinths constituted by the use of such fuzzy concepts.
It is thus the job of the Philosopher-King to save the concept from its abuse by the un-
enlightened, returning it to purity. In other words, the philosopher’s job is to reveal the
Tarskian predicates that underly fuzzy concepts. Let us take up this task in the sequel,
but with a slight change of viewpoint: Instead of seeing the task reductively — as a process
by which a hidden hyperuranion is revealed —, let us look at the task productively — as a
process by which fuzzy concepts are transformed into Tarskian predicates. The ascent to
the hyperuranion is real; it is just that Heaven is not given, but produced.

5.5 Warning!

SUMMARY. We close this chapter with a warning to systematic philosophers.
5

Let us first return to the problem in Section 5.3 of Is versus Ought. By Is, I mean
the status of being fixed. This idea of Is is that which underlies the representationalist
paradigm. When I can state that something Is the case (e.g. that an object Is a vector

120 CHAPTER 5. ON MEANING

space), this means that I have a formal procedure for verifying whether that something
is indeed the case. This requires that the domain of discourse (of the language that I'm
using) remains fized. As an example, consider mathematical objects. Once I construct the
axioms for a vector space, then I no longer need to justify that some V' is indeed a vector
space. I simply need to check that the axioms are satisfied and then I'm done; at this
point, I have verified that V is a vector space — no uncertainty involved. Vector spaces,
Compositions, Tarskian predicates, and so on — all of these objects lay claim to a totally
unambiguous (non-fuzzy) existence. But any formalism of what Is must be ‘closed’, to
the extent that the formalism can only account for what Is according to its descriptive
procedures. There are many informal reasons why this fact destroys the hope for a truly
Universal System of concepts, but there is also the formal reason demonstrated by Godel’s
incompleteness theorem, which shows that our formal systems are inherently limited in
their ability to confirm what Is the case. The incompleteness theorem reveals a hard-wired
limitation when it comes to formalizing what Is. We may thus say that every Is constitutes
a protocol. A protocol consists of a (finite) set of fixed procedures that determine a realm
of possibility. The realm of possibility determined by a protocol is by no means exhaustive
of the realm of possibility as such.

However, we should not revolt at the idea of a protocol. There are good protocols
and there are bad protocols: the good ones achieve what they set out to achieve, the bad
ones don’t. Every theorist knows what it’s like to create a bad protocol, and that’s why he
revises his work. For example, Frege’s Grundgesetze and ZFC set-theory are both attempts
to establish (what are now called) classical foundations for mathematics. However, Frege’s
Grundgesetze fails due to logical inconsistency, whereas ZFC succeeds. Thus we can say
that the Grundgesetze is a bad protocol whereas ZFC is a good protocol.

Once established, classical logic proved to be an immensely powerful tool. It aids
greatly in our understanding of mathematical objects, and allows us to construct many
wonderful things. It is both highly general and highly intelligible. Nonetheless, it would
be too extreme to say that it solves the problem of reasoning once and for all. There
are other phenomena that are better-captured by different logics, such as intuitionistic
or substructural logics. It is not that classical logic can’t describe the objects described
by intuitionistic or substructural logics; it is simply that to describe such phenomena
classically requires a tremendous amount of formal bloat, which affects the intelligibility
of the phenomena-in-question. In fact, when confronted with such objects, classical logic
behaves very much like a bad protocol: it creates a lot of bloat, and poorly executes the
task at hand.

The dual notion of Is is Ought. By Ought, I mean the process of constructing a protocol
according to specific values. When I ask myself “What Is 2?77, I am putting myself in the
situation of having to determine what = Ought to be. Unlike the Is situation, where objects
exist in a fixed manner, the Ought situation is where the nature of objects is in a state
of flux. The Creative forces that mould Nature are at play when Ought is present, and

5.5. WARNING! 121

Ought is always present, as it is a real process of thought and existence. However, without
arriving at an Is, the Ought is a failure. This gives a

Dictum 5.2. Every Ought has as its telos an Is, that is, a protocol.

Therefore it is the task of systematic philosophers to create protocols. To strive to create
systems that are both highly general — so as to account for things and topics as broad in
scope as those of philosophy —, yet highly intelligible — so as to be pragmatically efficient.
However, due to the impossibility of having a final protocol, philosophers can never assume
that they have realized a ‘final construction’ — there will always be something outside of
their constructed domains of discourse. Thus the dual task of philosophers is to accept the
inevitable demise of all worlds. If one has succeeded in building a general and intelligible
system, then it is good to use it as long as it gives no issues. However, when such a system
begins to act awkwardly when confronting a new kind of object, it is better to abandon it
and devise a new system that is more appropriate to the object. The most important thing
is to remain always thoughtful. This requires humility, yet also boldness. Boldness gives
the courage needed to approach big problems, whereas humility is required to conform
to their nature. An attitude which realizes a balance between boldness and humility is
perhaps the following

Principle 5.2. Take Thinking seriously, but not Thoughts.

122 CHAPTER 5. ON MEANING

Chapter 6

Concepts

6.1 Explication

SUMMARY. We outline the problem of ezplication, as defined by Carnap in [5, §I].
g

6.1.1 Carnap’s Criterion

SUMMARY. Carnap’s concept of, and criterion for, explication is discussed.
—§
In [5, p. 3], Carnap states that

the task of explication consists in transforming a given more or less inexact
concept into an exact one or, rather, in replacing the first by the second. We
call the given concept (or the term used for it) the explicandum, and the exact
concept proposed to take the place of the first the explicatum.

Although not a necessary requirement, an explication will often make use of an artificially
constructed language, in order to facilitate a more exact description of the concept.
Carnap also provides four requirements that an explicatum must fulfill: (1) similarity
to the explicandum, (2) exactness, (3) fruitfulness, (4) simplicity.! The idea is that presci-
entific concepts are transformed into scientific concepts via explication, which consists in
more rigorously articulating the rules for the concept’s use. An example given by Carnap
is the concept Fish. The prescientific concept of fish is ‘animal living in water’. According
to this concept, whales and seals, for instance, are fish. An explication of Fish, referred to
as Piscis by Carnap, is defined as ‘lives in water, is a cold-blooded vertebrate, and has gills

15, p. 5].

123

124 CHAPTER 6. CONCEPTS

throughout life’. Piscis satisifes requirements (1)—(4). Its similarity to the explicandum
is clear, although Piscis is a narrower concept than Fish, owing to the exactness of the
concept Piscis. It is fruitful, since it allows for more general and law-like statements about
it than does the concept Fish. And finally it is simple, being defined only by the three
properties ‘lives in water’, ‘is a cold-blooded vertebrate’, and ‘has gills throughout life’,
each of which is easy to identify and confirm.

6.1.2 Classificatory, Comparative, and Quantitative Concepts

SuMMARY. We elaborate upon Carnap’s discussion in [5, §1.4] of classificatory, comparative,
and quantitative concepts.

g
Carnap defines the following types of concepts in [5, p. 8]:

A classificatory concept (e.g., Warm) serves for classifying things into two kinds.
A comparative concept is a relation based on a comparison, with the sense of
‘more (in a cretain respect’ (e.g., Warmer) or ‘more or equal’. A gquantitative
concept serves to describe something with the help of numerical values (e.g.,
temperature).

Carnap discusses how a process of explication will often lead from a classificatory con-
cept to a comparative concept, and from a comparative concept to a fully scientific quan-
titative concept. For example, we have the classificatory concept Warm, which classifies
things into two classes: one class consisting of those items which are warm, and the other
class those which are not warm. Next, we have the comparative concept Warmer, which is
satisfied for a pair (x,y) whenever x is warmer than y. Then finally, we have a temperature
t(x) associated with each object . One way to see the problem is that, for some universe of
discourse U, a classificatory concept picks out a subset of U, a comparative concept endows
U with (relational) structure, and a quantitative concept provides specific measurements
to the elements of U.

Another way to look at the problem is to see each type of concept as a particular kind
of mapping. A classificatory concept is a map C : U — Q, where = {True, False}.
Specifically, for an element u € U, C(u) = True when u satisfies the concept and C(u) =
False when u does not satisfy the concept. On the other hand, a comparative concept can
be conceived as a map C' : U — N, where N is some ordered set. Since Carnap conceives of
comparative concepts as constituting ‘more (or equal to)’ relations, then N is some totally
ordered set. Thus, a comparative concept associates the elements of U with elements in an
ordered set. Finally, a quantitative concept is a map C': U — T where T is, for instance,
a field or vector space over e.g. the real numbers.

6.1. EXPLICATION 125

o g g Limit(U L)
Warmy \\\\\ ‘/Warmg ‘/Warmf
\\\j
Q Q Q
(a) (b) (c)
Figure 6.1

When the three kinds of concepts are seen in this perspective, we can see why the
types of concepts are ordered in terms of their degree of explicitness: The structure of IV is
more fine-grained than the structure of §2, and the structure of 7" is more fine-grained than
the structure of N. Therefore comparative concepts are more scientific than classificatory
concepts, and quantitative concepts are more scientific that comparative concepts. In the
case of {2, we have an unstructured set that simply has two truth values. In the case of
N, we have a set given the structure of a total order, which is clearly more enriched than
Q. Finally, T not only contains the order information of N, since number systems are
naturally ordered, but we also have algebraic operations defined on T, such as addition,
subtraction, and maybe multiplication and division. Thus, we not only are able to say e.g.
that = is less than y, as we would in N, but we are able to say by how much x is less
than y. Thus, the passage from classificatory to comparative to quantitative concepts is
the passage to increasingly fine-grained structures.

Thus, the concept Warm goes through a series of transformations: first, as a classifica-
tory concept, it classifies those things which are Warm. As a comparative concept, Warmer
provides an ordering to things based on their relative warmth. Finally, as a quantitative
concept, Temperature provides a specific quantitative value to things, which is a measure
of their actual temperature. But more specifically, once Temperature is introduced, then
the meaning of the concept Warmer is meant in the sense of ‘having a higher temperature’.

Although this seems clear enough, there is something lurking beneath this example
which is significant. Notice that to have a concept Warm at all, there must be some sort of
measurement applied to objects of U. For instance, if I say “x is Warm”, then I am passing
from an object = to a bodily sensation of warmth s. There are three ways to interpret this
with regards to what specifically has the property Warm. The first is the traditional view,
that = has the property Warm. Another view is that it is the sensation s itself, caused by
coming into contact with x, that is Warm. Finally, there is the view that it is the very
relation between x and s that is Warm. These three views furnish the three diagrams in
Figure 6.1.

Perhaps these three views could be associated with three levels of consciousness. The

126 CHAPTER 6. CONCEPTS

v—7' .5 Uxv —YD 5 g%
Warmg Warmerg
Warms Warmerg
Q Q
(a) Classificatory concept (C1). (b) Comparative concept (Cs).

UXULTXT

Warmerr
Warmery,

Q

(¢) Quantitative concept (Cs).

Figure 6.2

first is level conceives that objects themselves have properties. The second view is that
it is not objects, but one’s perceptions of objects that have properties. The third view is
that the relation between objects and one’s perceptions of them is what bears properties.
While the third seems perhaps the most compelling philosophically, it will not be of much
practical use in the rest of the chapter. However, I claim that the second view brings to light
an important aspect of predication. Note that in Figure 6.1b we still recover an extension
via Warmgo f : U — €, so we are not merely defining properties on sensations. However,
the fact that we have an intermediate S between U and €2 is crucial, as it incorporates the
notion of measurement into the process of property-ascription. Thus, it is not enough to
say simply that x has some property P, but we must ask according to what measurement
does = have the property P. In the case above, an object x € U is Warm under the
condition that Warmg(f(z)) = True. But this means (1) that the criterion for warmth is
first defined on a measurement space S, which here is our bodily sensations, and (2) that
our measurement device f yields a value in S that is Warmg.

Seen in this light, we may then understand the classificatory (C1), comparative (C2),
and quantitative (C3) concepts of Warm as modeled by the diagrams in Figure 6.2.

It is clear why a comparative concept is more ‘rich’ than a classificatory concept, as it
endows U and S with some order structure. The move from comparative to quantitative
requires more explanation. Since we think of S as a set of bodily sensations, and T" as an
algebraic structure (with numbers as elements), then it seems that 7" is more structured
than S, which could potentially explain why it is more ‘scientific’. However, if we were

6.1. EXPLICATION 127

to investigate S in depth, the problem would likely not be that it is poor in structure,
but on the contrary that its structure is too complex. A mathematical space S (which
would constitute a structure, in our theory) that sufficiently models sensation would likely
be an immensely complex structure. Also, there would very likely need to be a unique
S for each individual, since humans are quite different from one another. So really, the
problem with S being used as a measurement space is that it is both far too complex and
not well-understood by a scientific community. There using S as a measurement space is
unfruitful when taking into account the fact that scientific consensus requires structures
and laws that are easily identifiable by scientific communities.

Another problem that hinges on the fact that S is too complex of a measurement space
is that, due to the complexity of S, the measuring apparatus f must also be convoluted, and
likely not reproducible in any obvious way. So in reality, f probably changes depending on
too many variables, such as e.g. the temperature of the room that the person was in prior
to entering a new room. On the other hand, the measuring apparatus g, which could be
e.g. a thermometer, works in a much simpler way, since the relation between the physical
body and the numerical measurement of the thermometer is established by well-known
causal laws.

So we have identified two reasons why the quantitative concept is more scientific than
the classificatory and comparative concepts: (1) the measurement space 7' is better under-
stood than S, and (2) the measurement device g functions according to well-known causal
laws, whereas f does not. This to me seems to be the reason that C3 is more scientific
than C9 and C;. Thus, it doesn’t seem like a crucial requirement that 1" be some numer-
ical structure, nor that Warmerg C S x S be some total order. Instead, it seems more
generally that the following should hold:

1. T is better understood by a scientific community than is S.

2. The measuring apparatus g operates according to well known rules (such as causal
laws), whereas the operation of f is less well-understood.?

The first point takes care of Carnap’s criterion of exactness, whereas the second point takes
care of his criterion of simplicity.

The use of a measurement space is also significant insofar as it allows us to define prop-
erties and relations ‘in the abstract’, without requiring extensions. For instance, Warmerr
is a relation that applies to the numerical temperature values, not temperatures of objects
themselves. This thus provides a criterion for what a pair (u, v) of objects or locations must
satisfy in order for u to be warmer than v. Specifically, v is warmer than v if g(u) > g(v).
But we can change the domain U to any arbitrary domain U’, and this choice of domain
does not change the meaning of Warmer, insofar as no matter the domain, it must be mea-
sured by some ¢ that gives values in T', and the relation Warmerp C T x T is fixed. So
by fixing a measurement space T, we are able to preserve meaning even while extensions

2In Section 6.2.4.2, we will return to this problem by defining the descriptive complexity of a function.

128 CHAPTER 6. CONCEPTS

change. In Section 6.2.4.1, we will define such predicates that apply to these measure-
ment spaces (which we later call evaluation spaces for the sake of generality) as abstract
predicates.

6.1.3 Our Project: Enriching Traditional Semantical Approaches

SUMMARY. We provide an overview of the traditional (Tarskian) approach to semantics,
along with its generalizations provided by categorical semantics. We then specify three
objectives of this chapter: (1) how to move from ‘global’ to ‘local’ objects of universes of
discourse, (2) how to construct generalized truth values objects, and (3) how to conceive
of the semantics of predicates independently of their extensions.

§

In traditional (Tarskian) semantics, properties are defined with respect to a set U of
individuals. The set U is called a universe of discourse, a universe of objects, or more
simply a universe. For some property P, the meaning of P is given by its extension over
U, and thus properties are identified with subsets of U. The same is true for an n-ary
relation R, which gives a subobject of U™, namely those n-tuples of individuals that satisfy
the relation. In a classical logic, a property P is interpreted as a mapping [P] : U — 2,
where 2 contains the truth-values 0 and 1, denoting False and True, respectively. Thus,
the statement P(z) is true iff [P](iz) = 1, where i, € U is the individual denoted by the
constant symbol z in the language.

Truth-evaluation can be generalized to the situation where truth values are not merely
0 and 1. For instance, in the logic of a sheaf topos over a topological space X, the truth
values consist of the open sets of X. This endows the logic with a notion of ‘local truth’:
propositions in this logic are not absolutely true or absolutely false, but true in some places
and not true in others. For instance, if X is a topology on R, where R represents time,
then a proposition such as ‘John Smith is a US senator’ is true for any open set V' in X
during which John Smith is a senator for the entirety of V. In a categorical context, the
‘collection’ of truth values of a certain logic is called a subobject classifier, and is denoted
by €.

The situation can also be generalized so that the universe of discourse U is not simply
a set, but some other object, such as an algebraic structure. Also, there may be multiple
universes, not just one U. In model theory, the syntactic correlates of the semantical
universes are called sorts, and can be built up into compound sorts, called types. The idea
is that a sort or type is a universe in the language, whereas its semantic interpretation
is some object outside the language. The requirements for a category 6 to be able to
provide the semantics for some (first-order) language L are that € has (1) arbitrary finite
products, and (2) a subobject classifier. The existence of products is what enables one to
define n-place predicates, whereas the existence of a subobject classifier is what enables
one to classify the individuals that satisfy the predicates.

6.1. EXPLICATION 129

Thus we provide the definition from [11, p. 808] of a signature:
Definition 6.1 (Signature). A signature X is a triple ¥ = (X-Sort, ¥-Fun, ¥-Pred), where:
1. X-Sort is a set of sorts.
2. Y-Fun is a set of function symbols, i.e., maps f : A — B between sorts.
3. X-Pred is a set of predicate symbols.

Having defined what constitutes a signature ¥, we can define what constitutes an
interpretation of ¥, which is called a Y-structure:

Definition 6.2 (X-structure). Let ¥ be a signature, and € a category with finite products
and a subobject classifier . A Y-structure is given by a map M, where:

1. For each sort A € ¥-Sort, M A is an object in 6. For a string Ay,..., A, of sorts,
then M(Ay,...,A,) = MA; x--- x MA,. (For the empty string [], then M([]) =1,
the terminal object in 6.)

2. For each function symbol f: A;--- A, > B € X-Fun, Mf : Ay x---x A, > Bisa
morphism in 6.

3. For each predicate symbol P — Aj---A, € 3-Pred, MP is a subobject MP —
M(Ay,...,Ay) in 8. (A predicate P likewise corresponds to a morphism [P] :
M(Ay,...,A,) - Q2in B.)

Thus we have two generalizations of classical semantics, which is achieved by moving
from the category Set of sets to some other category 6: (1) set-theoretic domains of
discourse U can be generalized to objects other than sets, and (2) the Boolean subobject
classifier 2 can be generalized to a more complex subobject classifier €). In Section 6.2.3, we
will deal with a format that provides great freedom in constructing objects that behave like
subobject classifiers. This will, in turn, furnish great freedom in constructing languages.

There is still something that neither of these generalizations can account for, however,
which is the fact that individuals v € U may themselves have structure, and therefore
it seems too strong to say that some u satisfies, in its entirety, some property P. For
instance, if U consists of pieces of music, and I make the assertion that “u is Loud”, then
this does not necessarily mean that every moment in u is loud. This seems like a problem
of ‘local truth’, and therefore we might be led to assume that a sheaf topos could model
the assertion “w is Loud”. However, this is not correct, since we want to evaluate the
proposition “u is Loud” relative to u itself, not relative to some global ambient space in
which u exists. Specifically, we want to interpret the predicate Loud so that it applies to
the parts of each piece x € U that are Loud. So, this is a different type of relativity than

3This notion of structure is distinct from the notion of structure that we defined in Section .

130 CHAPTER 6. CONCEPTS

that encountered in sheaf toposes, where a proposition is true relative to some location
in the global space X. In the situation that we are attempting to outline, a proposition
P(u) is true in the locations of u itself where the proposition holds. We will deal with this
situation in Section 6.2.2.

A final objective of this chapter will be to conceive of a way to derive the semantics of
predicates that are, in some sense, independent of extensions. This relates to the discussion
in Section 6.1.2, where the measurement space T for temperature allows us to define the
property Warmerp, which is independent of the extension of the property Warm over a
universe of discourse. Defining these abstract predicates will enable us to reason about
potential objects, rather than only actual objects. We deal with this issue in Section 6.2.4.

6.2 Tools for Language-Construction

SUMMARY. We provide tools that enable construction of precise predicates in any context.
This involves defining (1) subobject predication, (2) truth values objects, and (3) abstract
predicates which provide a means for dealing with semantics independently of extensions.
We first provide some preliminary constructions that will be used throughout the chapter.

7§7

6.2.1 Preliminary Constructions

SUMMARY. We provide two kinds of constructions, each of which enables us to more easily
speak of collections of structures.

§

In the following, when we speak of structures, assume that this includes compositions
via the canonical encoding of compositions as structures (see Section 3). To construct
languages for reasoning about structures, we want to have sets of structures for universes
of discourse. There are two methods for acquiring sets of structures: (1) we can translate
sets of structures into structures, or (2) we can translate structures into sets. We can
achieve (1) via the following

Convention 6.1. Let U = {S;};cr be a set of structures. We can encode U as a structure
Str(U) via the following sequence of procedures:

1. For each S; € U, derive the structure

Pow(S;) ™y Power(S5;).

6.2.

2.

TOOLS FOR LANGUAGE-CONSTRUCTION 131

For each Pow(S;), define the morphism T; : 1 — Pow(S;) that picks out the top
element S; of Pow(S;). Derive therefore the limit structure

S Blem —» Limit(1 L5 Pow(S;)).

S;Elem corresponds to the singleton set {.S;}.

. Next, define

Str(U) Y Colimit(S; Elem, ..., S,Elem).

Str(U) is very much like the actual set U, since Str(U) corresponds to taking the dis-
joint union of the structures S; Elem, which are themselves like singleton sets. Thus,
Str(U) corresponds to taking the disjoint union of the singleton sets of structures
{S1},...,{Sn}, which is of course equal to U.

Although this method works for translating structures into sets, it is rather bloated.
So instead, we will take the opposite approach and translate structures into sets.

Our first step in achieving this translation is to define what we will call a unit of struc-
ture. Units of structure can be thought of as the elementary building blocks of structures,
as we will see.

Recall that for a structure S and set A in Str, the set AQS consists of the A-addressed
points of S. Acquiring the elements of AQS depends on the type of S, as follows:

1.
2.

If Type(S) = Simple, with coordinator @QX, then AQS C Hompge (A, X).

If Type(S) = Limit, with coordinator D consisting of coordinators C1, ..., C,, then
AQS C [], AQC;. (The subset is determined by the morphisms in D. If D is a
discrete diagram, then AQS =[], AQC;.)

. If Type(S) = Colimit, with coordinator D consisting of coordinators C1,...,Cy,

then AQS = (][, AQC;)/ ~. (The equivalence relation ~ is determined by the
morphisms in D.)

. If Type(S) = Power, with coordinator C, then A@S corresponds to AGQC. The

set AQQC is in bijection with the set Sub(@A x C) of subfunctors of @A x C. Since
Q@A x C is a product, then each subfunctor S C QA x C is likewise a product, and
thus AQS = AQA x AQC, as explained for when Type(S) = Limit.

. If Type(S) = Sub, with coordinator C, then AQS C AQ(C.

. If Type(S) = Hom, with coordinators Cy, Co, then note that a morphism f : C; —

Cs corresponds to a subobject of the product Cy x Cy. Thus, C'QC ! corresponds to a
power structure

Funes(Cq, Cy) P Power(Cy x C3),
—L1 2

132 CHAPTER 6. CONCEPTS

where F'u consists of all subobjects of C7 x C5 that correspond to morphisms f : C; —
Cy. Thus AQS corresponds to AQFuncs(C1,C3). We have already confirmed how
to take care of power structures, and Funcs(Cy,Cs) is a power structure. Therefore
follow the instructions for when Type(S) = Power.

Now we can define a unit of structure, as so:

Definition 6.3 (Unit of Structure). Let S be any structure in Str (or, equivalently, any
functor in Rel@) and A any set in Rel. A unit of structure is an element of AQS. Thus,
varying over all sets A in Rel and all structures S in Str, we get the collection of units of
structure Uy as
Uy = U A@S. (6.1)
A€eRelp,SeStrg

From Uy, we can easily recover structures. First of all, define the object map

H:Stro — Setg: S+ |] Aas, (6.2)
A€eRely

which, for a structure S, gives the set of S’s units of structure. (H will be used throughout
this chapter.) However, since S also has a name, we cannot simply identify it with H(S).
Thus, let 91 be the namespace from which the names of structures are taken. We have the
product 9 x P(Uy), consisting of pairs (N, U) where N is a name and U a subset of Uy. We
have a subset U; C M x P(Up) that corresponds to structures, where the first coordinate
is the name of a structure S, and the second coordinate is the set H(S). Thus structures
Strg are in bijective correspondence with sets in U;.
Finally, we get a set of sets of structures via P(U;) = Uz. So we have three levels:

1. Up, consisting of units of structure.
2. Uy, consisting of structures.
3. Uy, consisting of sets of structures.

In many sections in this chapter, it will be convenient to assume that structures are
elements of U7, and sets of structures are elements of Us. We will denote our usual structures
as Str-structures, and the structures in U; as Set-structures. However, if the context is
clear for whether we are dealing with Str-structures or Set-structures, then we will drop
the prefix.

We can also translate Str-structure morphisms into Set-structure morphisms. This is
an easy translation, and is left as an exercise.

6.2. TOOLS FOR LANGUAGE-CONSTRUCTION 133

6.2.2 Local Predication

SUMMARY. In classical semantical situations, the objects of universes of discourse have
no deeper structure. We expand upon that view by defining attributes. An attribute is
either ‘analytic’ or ‘synthetic’: an analytic attribute is a rule for extracting ‘local objects’
from ‘global objects’; a synthetic attribute is a rule for endowing objects with additional
information. The definitions of analytic and synthetic attributes paves the way for what will
be defined as descriptive enrichments. All of these steps enable us to predicate properties
of objects that apply to aspects of those objects, instead of the naive view that a property
applies to the entirety of an object.

5
6.2.2.1 Local Attributes of Structures

SUMMARY. We discuss analytic and synthetic attributes. We will see that a synthetic
attribute is often dependent on an analytic attribute.

5

In the following, we define and discuss attributes of structures. By an attribute of a
structure is meant the intuitive idea of an aspect or trait, such as ‘color’, ‘shape’, and so
on. There are two types of attributes that we wish to discuss, namely analytic attributes
and synthetic attributes. The terms ‘analytic’ and ‘synthetic’ are here meant in the philo-
sophical tradition of Kant, where an analytic truth is true by definition and a synthetic
truth is true by some external criterion. The idea of an analytic attribute of a structure is

that the attribute is in some way encoded in the structure’s definition. On the other hand,
a synthetic attribute of a structure is an attribute that it has externally to its definition.

(I) Analytic Attributes. Let us first discuss analytic attributes. Let S be a structure. Recall
from [chapter and section] that its ramification tree is the graphical representation of its
hierarchical construction. For instance, define as in [15] the structure

Note ? Limit(Onset, Pitch, Loudness, Duration), (6.3)

with lower level structures

Onset — Simple(R), 6.4

Fup—@QR

Pitch —>@ Simple(Z),

Fus—QZ

(
(
Loudness —s Simple(R), (
(
(

D
ot

(=)
(@)

Fuz—@QR

D
BN |

Duration — Simple(R),
Fug—QR

)
)
)
)
)

6.8

134 CHAPTER 6. CONCEPTS

each of which defines a module.

Given the structure Note, we may wish to inspect its onset information. In this case,
Onset would constitute an analytic attribute of Note, since Onset is constitutive of the
definition of Note. Since Note is a simple product of structures, we can recover Onset
via projection pry(Note). Notice, however, that if there were morphisms between the
coordinators, then projection onto Onset would not necessarily return all of Onset, but a
subobject K C Onset. Nonetheless, the Onset ‘material’ that is present in Note is still
recoverable, so there is nothing lost when performing the projection.

However, for colimit and power structures, there is no such projection, so we need to
discuss the general situation for recovering the lower level information of a structure. The
first method that we will discuss is a bit messy. However, it allows us to say that an
attribute a of a structure S is, up to isomorphism, one of its subobjects S, C S.

Lemma 6.1. Let S and T denote structures, and define

Lim 7y Limit(S,T).

We can recover pry(Lim) (resp. pro(Lim)) up to isomorphism as a subobject Lim C Lim.

Proof. Recall the mapping H from Equation 6.2. Note that L¢m corresponds to a set of
pairs, via H(Lim) = {AQS x AQT : A € Relp}. Therefore Power(Lim) corresponds
to the subsets P of H(Lim) such that pr{(P) is a substructure of S and pry(P) is a
substructure of 7. Thus, simply take the subset Pyt where pri(Py) = S and pry(Ppt) is
the substructure of T" given by taking only a single functional 1-addressed point pt € 1@T
(the other morphisms being inferred), thus reducing the structure of 7" to a single one of its
elements. Since pt & 1, the effect is that of returning S x 1. Thus we have S x 1 = §. O

The situation is easily generalized to limits of arbitrary diagrams of structures. For
structures of type Colimit, Power, and Sub, the situation is easy to verify. For colimit
structures, the subobjects corresponding to the coordinators are the canonical injections;
for power structures, the coordinator structure is recovered by taking the top element T
of the power structure; for sub structures, the situation is obvious. For structures of type
Hom, we can recover the coordinators C7, Cs via similar procedures as those discussed in
the sixth item of the second list in Section 6.2.1.

However, instead of proceeding to recover the lower level structures in this way, we
provide an alternative method. Specifically, we have the following recursive methods.

1. Limit. For a limit structure S with coordinators {C;}icr, to get the coordinator Cy,
perform the kth projection pry(S). Note that pry(S) does not necessarily equal Cj.
This is because of the morphisms that may be present in the coordinator D of S. For
instance, if

§ — Limit(1 20,

6.2.

TOOLS FOR LANGUAGE-CONSTRUCTION 135

where p(1) picks out a single point from C, then S consists only of the pair (1,p(1)).
Thus, pry(S) = p(1), which is a single element of C'.

. Colimit. For a colimit structure S with coordinators {C;};cr, we automatically

get the coordinator CY, since the colimit always preserves all information. This is
because, even if we have morphisms between the coordinators, then this simply makes
equivalence classes of elements in the disjoint union of the coordinators, and therefore
the elements persist no matter what. Note, however, that if we have arrived at S after
projecting out of some limit structure 7" of which S is a coordinator, then the totality
of S may not be present. This is a result of what was discussed in the previous point,
regarding morphisms in the coordinator of a limit structure. For instance, if we have

T — Limit(1 29),

then pry(7") = p(1) C S, which is, as above, a single element (potentially an equiv-
alence class) of S. Nonetheless, in this case we can still easily recover what is left
over via a canonical injection. For instance, to recover the component of the kth
coordinator C}, of S, then we get the morphism pj that makes the triangle

1¢>Ck

commute.

. Power. Again, what we can recover from a power structure depends on whether

there are higher level limit structures out of which we have projected. For instance,
suppose we have a structure

T — Limit(X 1 9,

where
S 7y Power(A).

To recover S from 7', we first perform pry(7"). However, if A ¢ f(X), then we cannot
recover A from the projection. But we would still like to recover as much of A as
possible from pry(7"). To do this, we then take the join of all the elements in the
subobject hierarchy of pry(7"), which is given by

y A

AeSub(pry(T))

136 CHAPTER 6. CONCEPTS

4. Sub. This situation is obvious.

5. Hom. As demonstrated previously, we can recover the coordinators of a hom struc-
ture

S ? Hom(Cl, 02)
via translation of S into a power structure

S" — Power(Cy x Cy).
Fu>—>C’1 XCQ

Thus follow the instructions for Power above.

With these five procedures outline, we are given instructions regarding how to ‘excavate’
an analytic attribute « from a structure S: we simply iterate procedures 1-5 above as we
are descending through the ramification tree of S.

Note, however, that an ambiguity may arise. Suppose we want to recover some -
attribute from S. Then this attribute should correspond to a (subobject of a) structure S,
in S’s ramification tree. However, what if there are multiple copies of S,? For instance,
suppose

S ? Limit(F,, F,).

Then if we want to recover an « attribute of S, we are left with a choice between the
first and second projection. Therefore, as a convention, when seeking to excavate an «
attribute, we should provide a means of identification of the nodes in the ramification tree.
This is simple, as it simply consists in assigning an integer sequence to each node, which
can be done canonically in the following way, depending on the type of S. First of all,
since S is at the top of the ramification tree, it receives the integer 1. Then the following
recursive procedures provide the method for assigning integer sequences to the nodes of
S’s ramification tree:

e If S is a limit, colimit, or hom structure, its coordinators C4,...,C, are ordered in
sequence, as given by their indices. Then pr;(S) is given the integer sequence 1.i.

e If S is a power or sub structure, then moving down one level to its coordinator A (or
a subobject of A) gives 1.1.

Thus, for an attribute o, we can define a map f, : U — U, from a set U of structures
to a set U, of structures derived from U according to the ‘excavation’ procedures outlined
above. If a structure S € U has no a-attribute, then f,(S) simply returns the empty
structure <.

(IT) Synthetic Attributes. A synthetic attribute of a structure S is an attribute that is
not contained in S’s ramification tree. To give an informal example, suppose we have

6.2. TOOLS FOR LANGUAGE-CONSTRUCTION 137

some encoding of a physical object z, and we wish to gauge its temperature. In this case,
Temperature is likely not an aspect involved in the construction of x, but nonetheless one
should be able to identify a temperature of x, since it’s an encoding of a physical object and
physical objects have a temperature. (We will see in Section 6.2.4 that synthetic attributes
relate to the notion of an evaluation space.)

To conceive of a synthetic attribute o of a Set-structure S, we require a Set-structure
M and a map that sends S (or an analytic attribute S, of S) to an element m € M. Thus,
for a set U of structures, we can acquire their synthetic attribute o as a map

o:U— M. (6.9)

In many situations, however, it is more precise to define a synthetic attribute so that
it applies not to the totality of S, but to a part of S, where a part is given by an analytic
attribute S,. Therefore we may wish to define some map o, : @(U) — M, which thus
gives o via the commutativity of

U—F—— a(U)

M

Now that we’ve defined analytic and synthetic attributes, when defining predicates on
structures we have the extra explicatory power of specifying which aspect (given by an
attribute) of the structure satisfies the predicate. This enables us to predicate proper-
ties/relations of an object relative to locations of the object itself.

6.2.2.2 Descriptive Enrichments of Structures

SUMMARY. We present the notion of a descriptive enrichment. These are meant to provide
more fleshed out descriptions of structures and compositions.

§

A descriptive enrichment is a means of describing an object in terms of its attributes.
Recall that analytic and synthetic attributes are special kinds of maps. An analytic at-
tribute is a map a : U — U, from a set U of structures to a set U, of structures that are
in some sense ‘substructures’ of those structures in U. On the other hand, a synthetic at-
tribute is a map o : U — M, possibly with 0 = ogo 3 for B : U — Up an analytic attribute
and og : Ug — M a synthetic attribute that applies to the S-parts of each S € U. Thus,
for a set U of structures, a set A of analytic attributes, and a set S of synthetic attributes,
we can use all of these attributes = = A LIS to provide more thorough descriptions of the

138 CHAPTER 6. CONCEPTS

structures in U. Also, the fact that we can use the same set = of attributes and apply all
the maps & € = to every S € U provides a uniformity with regards to the descriptions of
the structures in U.

Note that for a set = of attributes defined on U, and a structure S € U, we have the
set

2(S) = {£(S) : € € =) (6.10)

We would like to be able to classify the subsets of =, and then apply such classes of
morphisms to each S € U. Moving ‘upward’, we would like to provide classifications to the
subsets of =, and so on to arbitrary level n. Thus we define the following:

Definition 6.4 (Descriptive Enrichment Scheme). A descriptive enrichment scheme is a
quadruple & = (E,‘ﬁ, ,ﬁ), where:

1. = is a set of attributes defined over some domain U of structures.
2. N is the namespace, used to name individuals and classes.

3. C = (C1,...,Cy), where C; = E, and each Cjq is a subset C;1 C P(C;) such that
Ci+1 covers C;. (Note that each C; can be thought of as an ith order property, and
therefore the first-order domain of discourse is C = =.)

4. ﬁ = (N1 i —-N,...,N, : C), — ‘ﬂ), and thus each N; provides names to the
classes in C;.

Essentially, & provides a hierarchic classification scheme whose lowest level of indi-
viduals is the set = of attributes. This is fruitful in cases where we would like to classify
attributes hierarchically. For instance, suppose that = consists of attributes that are meant
to provide information regarding color, shape, spatial coordinates, and temporal coordi-
nates. Then we may wish to classify color and shape together — since they both apply to
physical appearance —, and classify the spatial and temporal coordinates together — since
they provide spatio-temporal information. Thus we’d get the set

Cy = {{color, shape}, {spatial coordinates, temporal coordinates}} C P(Z),

with e.g.
N3(C3) = {Appearance, Space-Time}.

We could probably stop here, but theoretically we could proceed to the nth level for
arbitrary n € N.

Once we have a descriptive enrichment scheme @, we can use it to instantiate how the
classification scheme operates on some X € U. First, recall that every structure F' has a
name Name(F'). Now we can define the following:

6.2. TOOLS FOR LANGUAGE-CONSTRUCTION 139

Definition 6.5 (Descriptive Enrichment). Let @ be a descriptive enrichment scheme, and
S € U astructure. A descriptive enrichment of S is denoted by @(.5), and the idea is that

P (S) instantiates @ by applying it to S. We set D(S) = (Z, 0, 8(5’), ﬁ(S)), where:

1.

2.

3.

= is as in Definition 6.4.
I is as in Definition 6.4.
Recall that C; = =. Then define
C(S) = (C1(S), .., CulS)),

where C(S) is as defined in Equation 6.10, and each C;1(S) is a subset C;1+1(S) C
P(C;(9)).

. Define the binary operation x : 91 x 9 — 91, where for strings s,t € M, st is the

concatenation of s and ¢. Then define
N(S) = (N1(8) : C1(S) = M, ..., N(S) : Cu(S) — M),
where for each K € C; we get the corresponding K (S) € C;(S), so that
Ni(S)(K(S)) = Name(S) x N;(K).

Though this looks cumbersome, all that it does is the same thing as in Definition
6.4, but ensures that the name of S is attached to the names of each class in C;. For
instance, let Name(S) = thisStructure and suppose a map £ € Cp provides color
information, and we have Ny(¢) = Color. Then N;(S)(£(S)) = thisStructureColor,
which simply establishes that £(S) is the Color attribute of thisStructure specifically.

We can also take a different approach to defining descriptive enrichments, by defining
an nth-order signature A as follows:

1.

We start with C; = Z as defined above as our set of attribute maps, which will
be brought into A as a sort C;. The names of the terms of C; are the names of
constant symbols in A, i.e., names of attribute maps (this corresponds to the naming
map N : C1 — 0N in Definition 6.4).

. The classification Cs of C in @ is brought into A by giving a set of property symbols

{PC', ... PO} =TI4.

Their names, which were provided by N2(C9) in Definition 6.4, are provided by the
names of the property symbols in A. Thus, for each property symbol Pic1 e Ily, we
have the semantics of PZ-Cl as a subobject [[Picl]] — Cjq.

140 CHAPTER 6. CONCEPTS

3. The classification of I1; is given by a set of second-order property symbols
{Plnlv"'aP]gl} :H2a

their names again being provided by A. The semantics of each Pl.H1 is likewise given
as a subobject [[Pinl]] — Cg, where Cy — Q€1 and therefore [[Pinl]] — QG

4. Proceed similarly for the classification of Ils, and so on for II,.

Defining A sheds some light on the contrast between a descriptive enrichment scheme
2 and one of its instantiations @(S). Essentially, we can use the same signature A for
dealing with @ and 9(S). The difference between @ and P (S) corresponds to a difference
in the interpretation of A. @ will correspond to an interpretation M that sends C; to the
collection = of attribute-maps, whereas @(S) will correspond to an interpretation M (.S)
that sends C; to the collection Z(5) as defined by Equation 6.10. The contrast between M
and M (S) with regards to their interpretations of sorts II; consisting of predicate symbols
naturally follows. (The only difference between the signature A for @ and A(S) for D(.5)
would be in the names of the constant symbols and predicate symbols. .. but this is not an
essential difference.)

The ‘image’ of such a signature A is given by Figure 6.3.

6.2.3 Truth Values

SUMMARY. We provide the tools for creating truth values objects in Str. We follow the
same procedures as Mazzola in [16].

7§7

In [16], Mazzola discusses the situation of creating languages for defining musicological
predicates. In that text, it is shown how to create truth values objects with functors in
the category Mod® of set-valued presheaves over Mod, where the latter is the category
of modules with affine homomorphisms. Mazzola calls these objects forms, and they are
analogous to our structures.

In Mod®, there is the given subobject classifier 2. However, one may wish to construct
a truth values object with a richer collection of truth values. To construct such an object,
we first pick a module I, and define the form

Val(I) Y Simple(]). (6.11)
Then, to get our truth values, we construct

TRUTH(I) — Power(Val(I)). (6.12)

141

6.2. TOOLS FOR LANGUAGE-CONSTRUCTION

nw.x.mﬂ. n D_A.:&. =g

\ / I

aOﬁN e HUWN

00D {igd " igd} = I

ADﬁN e HEﬁN

N.m u ﬁa\:ﬁm\mr .. .FA\:DﬁﬁNW — :”—H

50

:DﬁN :EﬁN

"AYOIRISTY UOTJRIYISSB]D o YSNnoIy)
pueodse am ¢) urewop YHm sdew 9InqrIjye oY) SUrORIIXS I99Jy "\ 2Injeuss oy} Jo uoryejussordal [ensia y :¢'9 oansi

\

Ebb / \ ﬁéb
: n :
\ /

To »D o »D

-

~

/

142 CHAPTER 6. CONCEPTS

The alternate notation for Power(Val(I)) is Qf, which expresses that TRUTH (I) is the
collection of subobjects of Val(I), and these subobjects are to be used as truth values. As
an example, Mazzola takes the real circle group S; = R/Z, which corresponds to the unit
interval [0,1]. We get TRUT H(S1) which consists of subobjects of S1, which can be used
as truth values for a fuzzy logic with values corresponding to intervals in [0, 1].

In the context of denotators [15], we have an A-addressed truth denotator as an ele-
ment of AQTRUTH (I). Thus, we get the set T = AQTRUTH (I) of A-addressed truth
denotators, and acquiring the total set of truth denotators is achieved by unioning over all
’]I"I4 for every address A. This gives the set T of truth values.

Mazzola uses these ideas of truth value forms and truth denotators to define what he
calls a textual semiosis, which is a language along with a semantics for the language. More
specifically, a textual semiosis is defined as a set map

8igpen : Tex — Texig(Den),, (6.13)

where Tex C UNICODE is a subset of unicode strings, called expressions. The expressions
are, intuitively, the statements of the language. To define Texig(Den);, first the category
Den of denotators is to be defined. Then define “Dens, = [],,~; Den™ to be the union of
all powers of the arrow set ;Den, including the identities which represent the denotators
as objects.”[16, p. 406] Then we can define

Texig(Den), = TP

to be the set of characteristic functions whose domain is the set of all finite length tuples
of denotators or morphisms of denotators, and whose codomain is T;.

The map sigpen is therefore simply a variation of the idea of categorical semantics,
where the expressions of a language L are interpreted in some category € via a functor
M. So sigpen plays this role of M in categorical semantics, but sigpen is a set map, rather
than a functor.

Furthermore, it is demonstrated* that for every morphism of modules h : I — J, there
is a canonical form morphism

TRUTH(h): TRUTH(I) — TRUTH(J).
This allows one to define a morphism of textual semioses. For two textual semioses
SigDen : Tex' — Texig(Den); and sigp,, : Tex” — Texig(Den),

a morphism is a pair (u, h) where u : Tex' — Tex? is a set map on expressions and b : [— J

4[16, p. 409].

6.2. TOOLS FOR LANGUAGE-CONSTRUCTION 143

is a module morphism, such that the diagram

;o1
Tex! — b, Texig(Den),

u Texig(Den)(h) (614)

Tex? ————— Texig(Den),
59 Den

commutes. This thus defines the category of textual semioses.

We can of course translate all of these constructions by replacing Mazzola’s forms with
our structures. Also, for a set I (in Rel), we need not define Val(I) (in Str) such that the
functor Fun(Val(I)) = @QI. Instead, we may take a subfunctor F'u ~— @I. For instance, if
we wish to define a topological structure on I, then we need to define a sieve S C @I that
generates this topological structure. Then we get

TRUTH(I) — Simple(@l),

which can be used like in a sheaf topos, i.e., where the subobjects in TRUTH(I) corre-
sponding to open sets are used as truth values.

6.2.4 Abstract and Concrete Predicates

SUMMARY. We provide a distinction between abstract and concrete predicates. We also
take a step in defining formally Carnap’s informal distinction between scientific and pre-
scientific concepts.

7§7

In the traditional Tarskian setup, the semantics of an expression F in a language L is
the extension of F given by some interpretation I. That is, the meaning of E is a set(-like
entity) of individuals that satisfy £. While this is generally fine for mathematical objects,
it is less convenient for languages that are not about the eternal objects one encounters in
mathematics. For instance, if we define the property Bird, then this should apply not only
to the birds that exist here and now, but to birds that have yet to be born or discovered.
Clearly, the extension of Bird is constantly changing, as birds frequently die and are born.
Therefore we should have a means of defining the semantics of a predicate independently
of its extension. We call such ‘pre-extensional’ predicates abstract predicates. In essence,
abstract predicates behave, as we will see, much like the extensional predicates one encoun-
ters in the traditional setup. However, the intuition is that the abstract predicates do not
have extensions over domains of discourse that we wish to reason about, but over abstract
domains of discourse, the individuals of which are used to evaluate the concrete individuals

144 CHAPTER 6. CONCEPTS

that we will wish to reason about. For instance, in the example from section 6.1.2 with
temperatures, the temperature space T x T' is used to establish a criterion for the relation
Warmer. The subobject Warmerp — T x T consists of a comparison of temperatures, but
not of the individuals that bear those temperatures. Thus, Warmery serves as an abstract
predicate, which will be actualized by a domain U of individuals once given a means of
measurement f: U — T.

Given such abstract relations that are ‘pre-phenomenal’” — in the sense that they do
not apply to phenomana, but to spaces that interpret phenomena —, we are thus able
to form abstract predicates in general, which would thus constitute an abstract language
Zp. The language ZLp essentially sets up a potential world (hence the P subscript), which
is actualized by giving concrete universes of individuals and rules for evaluating those
individuals according to the abstract spaces that exist in &p. Thus, the abstract predicates
of £p can be used to actualize concrete predicates in a new language & 4(p) that extends Zp.
As we will see, however, it is useful to specify what constitutes a permissible actualization
of ¥p, in order to refine the relationship between the potential and the actual. This is
achieved by providing an actualization condition, to be discussed below.

6.2.4.1 Abstract Predicates

SUMMARY. Abstract predicates are what enable us to define meaning independently of
extensions. They provide a basis for concrete realizations of meaning.

—
We start with a definition of an abstract predicate.

Definition 6.6 (Abstract Predicate). Let M be a structure, Q/ a truth values object, and
C — M the subobject of M given by the characteristic map xc : M — Q!. An abstract
predicate P is thus defined as the pair P = (M, C). We call M the evaluation space of P
and C the criterion of P.

We call M an evaluation space because it is the space that will be used to evaluate the
elements of a ‘concrete’ universe of objects U. For instance, in the temperature example,
the structure T', which has the structure of the field R, is used to evaluate the temperatures
of phenomena in some set U.

We call C' a criterion because its elements are those in M that satisfy the abstract
predicate P. Thus we know that, given a map f: X — M where X is a set of individuals,
f(x) satisfies the predicate if xo(f(x)) # L.

Compound abstract predicates can be formed in the usual way, with logical connectives
such as V, A\, =, and quantifiers V, 3.

For a collection IT of abstract predicates, we can define a language ¥p. To do this,
recall from section 6.1.3 the definition of a signature.

To define £p, we first define the signature Yp = (9, &, €), where:

6.2. TOOLS FOR LANGUAGE-CONSTRUCTION 145

1. 9Mis the collection of sorts that will, upon interpretation, correspond to the evaluation
spaces M of each abstract predicate P.

2. @ is the empty set.

3. € is the collection of predicate symbols that will, upon interpretation, correspond to
the criteria C' of each abstract predicate P.

Notice that we do not provide any function symbols since we do not yet need to provide
any mappings.

Defining a language &p over ¥p would thus consist of specifying a set of first-order
formulae over Yp.

An interpretation I of Yp constitutes a functor I : ¥p — Str, or, converting Str-
structures into Set-structures, a functor I : Xp — Set that sends each M € 9 to an
evaluation space M and each C € € to a criterion C.

To understand how [interprets compound predicates, recall from [11, p. 811] that a
context is a sequence I' = (x1 : Ay,...,z, : A,) of terms, each x; of sort A;. We say
that a context I' is suitable for a formula ¢ if all the free variables in ¢ occur in I'. A
formula-in-context I'.¢ is a formula ¢ with a specified context I". Thus, for a formula I".¢
with context I' = (z1 : Ay,...,2, : Ay), the interpretation of I".¢p by I is a subobject

I(T.¢) — I(Aq, ..., Ay). (6.15)

Thus, formulae over Xp constitutes what are called abstract predicates, and these ab-
stract predicates are the expressions of a language &p.

6.2.4.2 Actualizing Abstract Predicates

SUMMARY. The method for actualizing abstract predicates is discussed. This is the process
by which the pre-extensional abstract predicates are given extensional realizations.

5
To actualize abstract predicates, we first define an actualization condition:

Definition 6.7 (Actualization Condition). Let P = (M,C) be an abstract predicate
(where M and C' are objects in the semantic category). An actualization condition is
a pair K(P) = (Vdom, Vmap), Where:

1. Vgom is a predicate, used to define what constitutes a valid domain X for a map with
codomain M.

2. Viap is a predicate, use to define what constitutes a vaild map f: X — M.

146 CHAPTER 6. CONCEPTS

Since Vpap depends on Vgom, the format of the definition of V., is

Vinap(f) <= Vdom(dom(f)) A ¢, (6.16)

where dom(f) sends f to its domain, and ¢ is a subformula that completes the definition.
The idea is that Vgom and V., provide descriptions of what constitutes a valid domain
X and a valid map f : X — M. For instance, the definition of V4o, could be as simple as
providing a choice of specified domains, such as

Viom(X) <= X =AV---VX =N,

or it can be a more complex formula that picks out domains that satisfy more elaborate
requirements.

The definition of Vy,,p will often be more complicated than that of Vgom, as the former
will contain a description of the functional process itself that must be satisfied by a map
f X — M. Usually, functions in a language are defined outside of the language, via
definitional equalities such as

f(n)=n+1. (6.17)

The definitional equality symbol = means that f(n) is equal to n+ 1 by definition. This is
in contrast to propositional equalities, such as e.g.

k(m +n) = km + kn, (6.18)

since k(m-+n) is not defined as km+ kn, but is a proposition — and thus requires proof — in
a language L. Thus, propositional equalities are formulated within languages, whereas defi-
nitional equalities are meta-statements about languages. So we cannot provide definitional
descriptions of functions in the definition of Vy,ap, since Vi, is a compound predicate
defined within the language. However, we can perform an internalization of definitional
equalities into propositional equalities, thus bringing them into the language. For instance,
f(n) from Equation 6.2.4.2 can be brought into a language L via the formula

vn e N(f(n) =n+1). (6.19)

For the situation in which f does not have any clear rule, such as if f is a set map
where everything is mapped in a haphazard way, then the internalization would be much
more complex. For instance, we would have to describe f by specifying its value on every
member of the domain, which would give a formula such as

fny)=xz1 A A f(ng) = o (6.20)

Given such disparities between the lengths of internalized function definitions, it is
reasonable to establish a criterion for evaluating the descriptive complexity of a function.
This is in the spirit of Kolmogorov complexity, which provides a complexity value to a
computational object based on the length of the shortest computer program (in a specified
programming language) that generates the object.

Analogously, given a function f, we define its descriptive complexity as so:

6.2. TOOLS FOR LANGUAGE-CONSTRUCTION 147

Definition 6.8 (Descriptive Complexity). Let f : X — M be a map in some signature .
The descriptive complezity of f, denoted by 6(f), is defined as the length of the shortest
formula over X that constitutes an internal definition of f. We denote the minimal formula
of f by ming(f), and thus §(f) = len(ming(f)).

Note that the length of a formula is the quantity of symbols used to construct it. So,
for instance, the descriptive complexity of

Vn e N(f(n)=n+1)

is 14 (which includes brackets). Or, if we notated the operation + as a function on pairs,
such as

Vn € N(f(n) = +(n, 1)),

then the length is 17.
A function with no clear rule will have as its shortest internalization the formula of the
form

fn) =z A+ A f(ng) = zx, (6.21)

as defined in Equation 6.20. For any function f, denote by €(f) its element-by-element
description as given by formula 6.21. Since the length of each subexpression ‘f(n;) = x;’
is 6, and we need an A for each member of the domain n; € N, except for one, then the
length of €(f) is

len(e(f)) =6 - card(N) + card(N) — 1. (6.22)

So, for a function f, if len(ming(f)) = len(e(f)), then f is a mazimally complex function.
On the other hand, a minimally complex function g would be any constant function

Vz € X (g(z) = c), (6.23)

so long as card(X) > 1. The length of the minimal description of such a constant function is
11. Thus, for a finite domain X, we may classify functions A on X by descriptive complexity,
with values ranging between 11 and len(e(h)). Therefore, descriptive complexity ¢ forms
an equivalence relation (when applied to a set of functions).

In general, we can conceive of the descriptive complexity of a predicate as the minimal
internal definition of that predicate. For instance, we could have the following definitions

of Q(x):
1. Q(z) <= z > 5,
2. Q(z) <= z>5A~(x=2).

But x > 5 obviously implies —(z = 2), so the first definition is sufficient.
Thus, for predicates Vyom and Viap that constitute an actualization condition for an
abstract predicate P, we may evaluate them for their descriptive complexity.

148 CHAPTER 6. CONCEPTS

We will return to the topic of descriptive complexity in Section 6.2.4.3 to see how it
relates to scientific and prescientific concepts. But for now, let us return to the discussion
of actualizing abstract predicates.

As defined above, for an abstract predicate P = (M, C), an actualization condition
is a pair K(P) = (Vdom, Vmap). However, we need to define the domains over which an
interpretation I of Vgom and V., are to range. As a general convention — which need
not be followed religiously — assume that I(Vgom) ranges over Us, and that I(Viap) ranges
over the collection of set maps f whose domain is in ¢y and whose codomain is in ¢;. Call
this set of morphisms F'(Us,U;). With this information, we can define a special kind of
extension® to the abstract signature Yp. To derive this new signature, which we can call
Y 40(p), We add the following to Xp:

1. To Y¥p-Sort, add the sorts Uy and F(Ujy,U;), that are to interpret to U and
F(Us,Uy), respectively.

2. For a subset m C II of the abstract predicates that were used to construct £p,% devise
actualization conditions K (p) = (Vaom(P), Vmap(p)) for p € m, and for each K (p) add
therefore Vaom(p) and Viap(p) to X-Pred.

The resulting language &4, (py establishes a first step toward actualizing the abstract
language <p, as we have now added some actualization conditions.

The next step, which leads to a concrete actualization, is then to specify the following:
For a subset p C 7 of actualization conditions from m, we need to add the following to
Y 4(p) for each actualization condition K(r) € p:

1. A set D, of sorts to X4, p)-Sort. Each sort d € D, will interpret to an element
in the interpretation of Vgom (7). That is, for an interpretation I, we will have that
I(d) € I(Vgom(r)). This is because I(Vgom(r)) will be the collection of valid domains
of objects that can map into the evaluation space M of some abstract predicate P,
and thus I(d) will be one of these domains of objects.

2. A set @, of function symbols to % 4 p)-Fun. Each function symbol ¢ € @, is defined
on a respective sort d € D,. We also have that I(¢) € I(Vmap(r)). This is because
I(Vmap(r)) will be the collection of valid maps into the evaluation space M of some
abstract predicate P,, and thus I(¢) will be one of these maps.

We can call such an extension ¥ 4p). The subscript A(P) is meant to suggest that
Y 4(p) actualizes (some of) the potentialities — i.e., abstract predicates —in Xp. Figure 6.4
demonstrates the contrasts between Yp, X 4, (p), and X 4p).

Given this scheme for dealing with the ascent from abstract to concrete, we can con-
struct a partial order over the ‘base’ signature ¥p. Since in moving from abstract predicates,

5We mean ‘extension’ in the sense of extending a language; we do not mean denotational extension.
6See the definition of Xp in Section 6.2.4.1.

149

6.2. TOOLS FOR LANGUAGE-CONSTRUCTION

"9 931

@V £q poy
-pads ore yey) sdew oYy Jo owos soziear WV (o)

u,

qup un
Tup

n
Ty

Ha.\. Hb

* Jerpuajod, A[orow [I9s ode AdYJ, *Jy OjuUI
sdewr osoy) Ajmads 104 jou seop Jnq ‘sdewr pijea

"9801[) Se YONS sagedIpald JorIISqe JO SISISU0D dgs (v)
pue surewop pipea 10§ soyeorpaid sppe @V (q)

150 CHAPTER 6. CONCEPTS

to actualization conditions, to actualizations, we are adding to the components of ¥p, the
partial order is defined component-wise as so: We say that X < ¥, if all of the following
conditions hold:

1. Y¢-Sort € Xy-Sort,
2. Y¢-Fun C Xy-Fun,
3. X¢-Pred C Xy-Pred.

Thus we get the partial order PXp given by such extensions, and paths through PXp
correspond to increases of actualized potentialities.

6.2.4.3 Scientific and Prescientific Concepts

SUMMARY. We elaborate upon Carnap’s distinction between scientific and prescientific
concepts. We provide a criterion that is more general than Carnap’s criterion for scientific
concepts.

7§7

Let us now return to actualization conditions. For an abstract predicate P = (M, C),
we give an actualization condition as a pair of predicates K = (Vgom, Vmap). Furthermore,
we can provide a measure of the descriptive complexities of Vo, and Viap, respectively.
Returning to the discussion on explication in Section 6.1.2, in the discussion of the ab-
stract predicate Warmer, we had two versions, with respective evaluation spaces S and
T. S consists of bodily sensations, whereas T' consists of real numbers. Furthermore, S is
considered a naive evaluation space, whereas T is considered more scientific and precise.
Why is this? We may identify some of the aspects of T, such as the following;:

e It is a ‘large’ space, as it contains infinite elements.

e There is a precise means for differentiating between the elements in 7', as a result of its
algebraic structure. For instance, for two temperatures s,t € T, we can evaluate their
difference |t — s|. Moreover, since the space is infinite, and moreover a continuum,
we have very fine-grained differentiation between the elements. Thus we can make
very precise measurements, and also differentiate between such measurements.

e T has a rich structure, which is that of a field. On the other hand, S is simply a set,
with no clear structure.

e We may unambiguously refer to the elements of T'. This is in contrast to the elements
of S, which are not clearly understood, and thus there is no clear understanding of
what is actually being denoted when we refer to an element s € S. Furthermore,

6.2. TOOLS FOR LANGUAGE-CONSTRUCTION 151

when we refer to an element ¢ € T', there is no ‘extra’ reference. When I refer to a real
number ¢ € T, there is no extra information that I need to understand ¢, as its nature
is determined completely by its role in the structure of 7. On the other hand, given
the set S of bodily sensations, and a sensation s € S, then this suggests something
external to S itself, namely, the actual structure of the sensations themselves.

These are a few points that may aid in the understanding of what constitutes a scientific
evaluation space M, although by no means do we have a scientific criterion for what
constitutes a scientific evaluation space.

Now, suppose we have an abstract predicate P = (M, C). We have the following

Principle 6.1. An actualization condition K = (Viom, Vmap) for P is more scientific the
lower is the descriptive complexity of Vaom and Vmap.

We make this claim because it demonstrates the following;:

1. We have ezact and simple knowledge of the domains of objects that the concept can
apply to. Our knowledge of domains is exact because we have V4o defined formally,
and it is simple because Vyom has low descriptive complexity.

2. We have exact and simple knowledge of the rules that evaluate the domains of objects
given by Vgom. Again, our knowledge of rules is ezact because we have Vi, defined
formally, and it is simple because Vy,,p has low descriptive complexity.

Recall that Carnap’s four criteria for explication are (1) similarity to the explicandum,
(2) exactness, (3) fruitfulness, (4) simplicity. Thus, we have fulfilled criteria (2) and (4).
It would be much more difficult, however, to formalize what constitutes criteria (1) and
(3). However, we might speculate that (1) could be achieved if one were to define some
sort of similarity relation between the expressions of the language of the explicandum and
the expressions of the language of the explicatum. On the other hand, we may be able
to formulate (3) via some function that maps expressions in the explicatum language to
their ‘degree of fruitfulness’. However, such formal devices for determining the satisfaction
of (1) and (3) may not always be useful, whereas formalization of (2) and (4) has direct
application, and I claim is relevant to scientific practice.

152 CHAPTER 6. CONCEPTS

Bibliography

LN B 9o O

Aristotle. “Metaphysics”. In: The complete works of Aristotle: the revised Oxford
translation. Princeton University Press, 1991.

Aristotle. “Physics”. In: The complete works of Aristotle: the revised Oxford transla-
tion. Princeton University Press, 1991.

Aristotle. The complete works of Aristotle: the revised Oxford translation. eng. Prince-
ton, N.J: Princeton University Press, 1991.

Robert Brandom. Making it explicit: Reasoning, representing, and discursive com-
mitment. Harvard university press, 1994.

Rudolf Carnap. Logical foundations of probability. University of Chicago press, 1950.

Brendan Fong and David I Spivak. An invitation to applied category theory: seven
sketches in compositionality. Cambridge University Press, 2019.

Gottlob Frege. The foundations of arithmetic: A logico-mathematical enquiry into the
concept of number. Northwestern University Press, 1980.

Jean-Yves Girard. “From foundations to ludics”. In: Bulletin of Symbolic Logic 9.2
(2003), pp. 131-168.

Paul Guyer and Allen W Wood. Critique of pure reason. 1998.

Wilfrid Hodges et al. A shorter model theory. Cambridge university press, 1997.
Peter T Johnstone. Sketches of an Elephant: 2 Volume Set. 2002.

Alain Lecomte. Meaning, logic and ludics. World Scientific, 2011.

Saunders Mac Lane. Categories for the working mathematician. Vol. 5. Springer Sci-
ence & Business Media, 2013.

Saunders MacLane and Ieke Moerdijk. Sheaves in geometry and logic: A first intro-
duction to topos theory. Springer Science & Business Media, 2012.

Guerino Mazzola. “Denotators”. In: The Topos of Music I: Theory. Springer, 2017,
pp. 41-85.

Guerino Mazzola. “Predicates”. In: The Topos of Music I: Theory. Springer, 2017,
pp. 327-349.

153

BIBLIOGRAPHY

Guerino Mazzola. The topos of music: geometric logic of concepts, theory, and per-
formance. Birkhauser, 2012.

Jaroslav Peregrin. “Inferentialism and normativity”. In: (2013).
Wilfrid Sellars. “Inference and meaning”. In: Mind 62.247 (1953), pp. 313-338.

Wilfrid Sellars. “Language as Thought and as Communication”. In: Philosophy and
Phenomenological Research 29.4 (1969), pp. 506-527.

Wilfrid Sellars. Language, Rules and Behavior’, S. Hook (ed.): John Dewey: Philoso-
pher of Science and Freedom. 1949.

Ludwig Wittgenstein. Philosophical investigations. John Wiley & Sons, 2010.

